
CONVERSATIONAL .
PROGRAMMING LANGUAGE
USER'S MANUAL

DEC-l0-LCPLA-B-D

digital equipment corporation • maynard, massachusetts

First Printing, March 1976

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or
reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (S) 1976 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM

DECsystem-lO
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECsystern-20

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-IO
TYPESET-II

CHAPTER 1

CH~.PTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

CHAPTER 13

CHAPTER 14

CHAPTER 15

CHAPTER 16

CHAPTER 17

CHAPTER 18

CHAPTER 19

CHAPTER 20

CHAPTER 21

CHAPTER 22

CHAPTER 23

CHAPTER 24

CHAPTER 25

CHAPTER 26

CHAPTER 27

CHAPTER 28

CHAPTER 29

CHAPTER 30

CHAPTER 31

CHAPTER 32

SUMMARY OF TABLE OF CONTENTS

INTRODUCTION TO CPL (A)

BASIC CPL LANGUAGE ELEMENTS (B)

PROGP~~MING ELEMENTS (B)

PROGRAM MANIPULATION STATEMENTS (B)

THE DECLARE AND DEFAULT STATEMENTS (B-D)

DATA TYPES (B-D)

THE ASSIGNMENT STATEMENT AND CPL
EXPRESSIONS (B-C)

LABELS AND "GO TO" AND "IF" STATEMENTS (B)

THE DO AND END STATEMENTS (B-D)

ARRAYS (DIMENSIONED VARIABLES) (B)

GET LIST AND .PUT LIST TO TERMINAL (B-C)

GET AND PUT WITH STRING OPTION (C)

THE PUT EDIT STATEMENT (C-D)

FILE I/O TO ARBITRARY FILES (C-Dl

BLOCK STRUCTURE AND DECLARATION SCOPE
RULES (C-D)

STORAGE CLASSES (D)

SUBROUTINE AND FUNCTION PROCEDURES (C-D)

ON-CONDITIONS AND ERROR HANDLING (C-D)

BASED STORAGE AND POINTERS (D)

A LIST PROCESSING EXAMPLE (D)

OTHER STATEMENTS (B)

STRUCTURED AND GOTO-LESS PROGRAMMING (C)

BUILT-IN FUNCTIONS AND PSEUDO-VARIABLES
(B-D, R)

CONVERSIONS AMONG COMPUTATIONAL DATA
TYPES (D)

CPL ERROR MESSAGES (R)

QUESTIONS AND ANSWERS ABOUT CPL (R)

COMPARISON OF CPL WITH ANSI PL/I
STANDARD (R)

RUNNING CPL UNDER TOPS-I0 (R)

RUNNING CPL UNDER TOPS-20 (R)

CPL PROGRAMMING EXAMPLES (B-D)

LIST OF CPL ABBREVIATIONS (R)

CPL SUMMARY (R)

iii

Page

1-1

2-1

3-1

4-1

5-1

6-1

7-1

8-1

9-1

10-1

11-1

12-1

13-1

14-1

15-1

16-1

17-1

18-1

19-1

20-1

21-1

22-1

23-1

24-1

25-1

26-1

27-1

28-1

29-1

30-1

31-1

32-1

TO THE READER

CHAPTER 1

1.1
1.2

1.3
1.4
1.5
1.6
1.7
1.8
1.9

CHAPTER 2

2.1
2.2

2.3
2.3.1
2.3.2
2.4
2.5
2.6
2.7
2.8
2.9

CHAPTER 3

3.1
3.2
3.3
3.4
3.5

3.6
3.7
3.8

CHAPTER 4

4.1
4.2
4.3
4.4
4.5
4.6
4.7

CONTENTS

Page

xv

INTRODUCTION TO CPL (A) 1-1

DESK CALCULATOR MODE (A) 1-1
SCIENTIFIC NOTATION AND E-TYPE CONSTANTS
(A) 1-2
BUILT-IN FUNCTIONS (A) 1-2
THE ASSIGNMENT STATEMENT (A) 1-3
USE OF "COLLECT" STATEMENTS (A) 1-3
MODIFYING YOUR PROGRAM (A) 1-4
STATEMENTS LABELS AND THE GOTO STATEMENT (A) 1-5
THE IF STATEMENT (A) 1-6
THE DO STATEMENT (A) 1-6

BASIC CPL LANGUAGE ELEMENTS (B)

THE CPL CHARACTER SET (B)
ALPHABETIC, NUMERIC AND ALPHAMERIC

CHARACTERS (B)
SPECIAL CHARACTERS AND OPERATORS (B)

Special Characters (B)
Two-character Operators (B)

CHARACTER-STRING-ONLY CHARACTERS (B)
IDENTIFIERS (B)
VARIABLE NAMES (B)
KEYWORDS (B)
COMMENTS (B)
ABBREVIATIONS AND ALTERNATE KEYWORDS (B)

PROGRAMMING ELEMENTS (B)

DIRECT AND COLLECT STATEMENTS (B)
TERMINATING SEMICOLON (B)
LINE NUMBERS (B)
MULTIPLE STATEMENTS PER LINE (B)
CONTINUING STATEMENTS ON ADDITIONAL LINES

(B)
STATEMENT NUMBERS (B)
PLACEMENT OF COLLECT STATEMENTS (B)
REPLACING COLLECT STATEMENTS (B)

PROGRAM MANIPULATION STATEMENTS (B)

2-1

2-1

2-1
2-1
2-1
2-2
2-2
2-2
2-2
2-3
2-3
2-3

3-1

3-1
3-1
3-1
3-1

3-2
3-2
3-3
3-3

4-1

THE LIST STATEMENT (DIRECT ONLY) (B) 4-1
THE ERASE STATEMENT (DIRECT ONLY) (B) 4-2
THE NUMBER STATEMENT (DIRECT STATEMENT) (B) 4-2
THE SAVE STATEMENT (DIRECT STATEMENT) (B) 4-3
THE LOAD STATEMENT (DIRECT ONLY) (B) 4-3
THE WEAVE STATEMENT (DIRECT ONLY) (B) 4-3
THE EXECUTE STATEMENT (DIRECT ONLY) (B) 4-4

v

4.8
4.9
4.10
4.11

CHAPTER 5

5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.1.5
5.1.6
5.1.7

5.2
5.2.1
5.2.2
5.2.3
5.2.4

5.2.5
5.2.6

CHAPTER 6

6.1
6.2
6.3
6.4
6.5

CHAPTER 7

7.1

7.2
7.3
7.4
7.4.1

7.4.2
7.4.3
7.4.4
7.4.4.1
7.4.4.2
7.4.4.3
7.4.4.4
7.4.5
7.4.6
7.4.7
7.4.8
7.5

CONTENTS (Cont.)

THE CONTINUE STATEMENT (DIRECT ONLY) (B)
THE BREAK STATEMENT (DIRECT ONLY) (B)
THE NOBREAK STATEMENT (DIRECT ONLY) (B)
THE MONITOR STATEMENT (DIRECT ONLY) (B)

THE DECLARE AND DEFAULT STATEMENTS (B-D)

Page

4-4
4-5
4-5
4-5

5-1

THE DECLARE STATEMENT (COLLECT ONLY) (B-D) 5-1
Data Type Attributes (B) 5-1
Arrays (B) 5-2
Alternate Method For Specifying Arrays ~l 5-2
Storage Class Attributes (D) 5-2
Other Attributes (D) 5-3
Default Attributes (B) 5-3
Multiple Declarations And Attribute

Factoring (C) 5-3
THE DEFAULT STATEMENT (COLLECT ONLY) (D) 5-4

The Range-spec (D) 5-4
The Default-spec (D) 5-5
Conflicting DEFAULT Statements (D) 5-5
Default Rules In Absence of DEFAULT

Statement (D) 5-5
Examples (D) 5-5
Overriding Defaults With DECLARE State-

ment (D) 5-6

DATA TYPES (B-D)

"FIXED" DATA TYPE (B)
"FLOAT" DATA TYPE (B)
"CHARACTER" DATA TYPE (C)
"BIT" DATA TYPE (C)
"POINTER" DATA TYPE (D)

THE ASSIGNMENT STATEMENT AND CPL
EXPRESSIONS (B-C)

THE ASSIGNMENT STATEMENT (DIRECT OR
COLLECT) (B)

CPL EXPRESSIONS (B)
DATA CONVERSIONS (C)
CPL EXPRESSION OPERATORS (B-C)

+, - And * (Addition, Subtraction And
Multiplication) (B)

/ (Division) (B)
** (Exponentiation) (B)
Comparison Operators (B)
Conversions For Comparisons (C)
Character String Comparisons (C)
BIT String Comparisons (C)
POINTER C.omparisons (D)
+ And - (Prefix Plus and Minus) (B)
& And ! (Logical And and Or) (B)
A (Logical Not Operator) (B)
11 (String Concatenation Operator) (C)

PRECEDENCE OF OPERATORS (B)

vi

6-1

6-1
6-1
6-2
6-2
6-3

7-1

7-1
7-1
7-1
7-2

7-2
7-2
7-3
7-3
7-3
7-4
7-4
7-4
7-4
7-4
7-5
7-5
7-5

CHAPTER 8

8.1
8.2
8.3
8.3.1
8.3.2
8.3.3
8.3.4
8.3.5

CHAPTER 9

9.1

9.2
9.3

9.3.1
9.3.2

9.3.3
9.3.4
9.3.5

9.4

9.5

9.6
9.6.1
9.6.2

CHAPTER 10

10.1
10.2
10.3
10.4
10.5

CHAPTER 11

11.1
11.2
11.3
11.3.1
11.3.2
11.4

CHAPTER 12

12.1
12.2

CONTENTS (Cont.)

LABELS AND "GO TO" AND "IF" STATEMENTS
(B)

STATEMENT LABELS (COLLECT O~LY) (B)
THE GO TO STATEMENT (COLLECT ONLY) (B)
THE IF STATEMENT (COLLECT ONLY) (B)

Omitting The ELSE Clause (B)
Separating The Else Clause (B)
Nested IF Statements (B)
DO/END Groups As THEN/ELSE Clauses (B)
BIT Values In The IF Expression (D)

THE DO AND END STATEMENTS (B-D)

THE NON-ITERATIVE DO-GROUP (COLLECT ONLY)

Page

8-1

8-1
8-1
8-1
8-2
8-2
8-2
8-3
8-3

9-1

(B) 9-1
THE WHILE-ONLY DO GROUP (COLLECT ONLY) (B) 9-1
THE DO-GROUP WITH DO VARIABLE (COLLECT

ONLY) (B-C) 9-2
The Format Of The "spec" (B) 9-3
Completely Unsatisfied Specifications

(B) 9-4
The Effect Of The WHILE Clause (B) 9-5
Multiple Specifications (B) 9-5
DO-variable With Non-arithmetic Data

Type (C) 9-6
EXPRESSION EVALUATION IN DO-STATEMENT

CLAUSES (D) 9-6
NORMAL AND ABNORMAL TERMINATION OF DO

GROUPS (C) 9-7
THE END STATEMENT (COLLECT ONLY) (B) 9-7

Multiple Closure Of DO Groups (C) 9-7
GOTO To Multiple Closure END Statement

(D) 9-8

ARRAYS (DIMENSIONED VARIABLES) (B)

ONE-DIMENSIONAL ARRAYS (VECTORS) (B)
LOWER BOUNDS OTHER THAN 1 (B)
OTHER DATA TYPES FOR ARRAYS (8)
TWO-DIMENSIONAL ARRAYS (MATRICES) (B)
ARRAYS OF MORE THAN TWO DIMENSIONS (E)

GET LIST AND PUT LIST TO TERMINAL (B-C)

THE PUT STATEMENT (COLLECT OR DIRECT) (B)
THE ? STATEMENT (COLLECT OR DIRECT) (8)
THE GET STATEMENT (COLLECT OR DIRECT) (B)

Data Type Conversions (C)
Omitted Data Values (C)

VARIABLE FORMAT FOR PUT LIST (C)

GET AND PUT WITH STRING OPTION (C)

PUT WITH "STRING: OPTION (e)
GET WITH "STRING" OPTION (C)

vii

10-1

10-1
10-2
10-2
10-2
10-3

11-1

11-1
11-1
11-1
11-1
11-2
11-2

12-1

12-1
12-1

CHAPTER 13

13.1
13.1.1
13.1.2
13.2
13.3
13.4
13.5
13.6

13.7
13.7.1
13.7.2
13.7.3
13.7.4
13.7.5
13.7.6
13.7.7
13.7.S
13.8
13.S.1
13.S.2
13.8.3
13.S.4
13.9
13.10
13.11
13.11.1
13.11.2
13.12
13.12.1
13.12.2
13.12.2.1
13.12.2.2

CHAPTER 14

14.1

14.1.1
14.1.2
14.2

14.2.1

14.3
14.3.1
14.3.2
14.3.3
14.3.4
14.3.5
14.3.6
14.3.7
14.4
14.5
14.6
14.7

CONTENT S (Con t .)

THE PUT EDIT STATEMENT (C-D)

INTRODUCTION (C)
Basic Format (C)
Example (C)

THE MOST COMMON FORMAT ITEMS (C)
FURTHER PUT EDIT EXAMPLES (C)
ITERATION FACTORS (C)
HOW PUT EDIT IS EXECUTED (C)
DETAILED SPECIFICATION OF THE FORMAT LIST

(C)
DATA FORMAT ITEMS (C)

The F Format Item (C)
The E Format Item (C)
The A Format Item (C)
The B Format Item (C)
The Bl Format Item (C)
The B3 Format Item (C)
The B4 Format Item (C)
The B2 Format Item (C)

CONTROL FORMAT ITEMS (C)
The X Format Item (C)
The COLUMN Format Item (C)
The SKIP Format Item (C)
The PAGE Format Item (C)

THE REMOTE FORMAT ITEM (C)
THE FORMAT STATEr.KENT (COLLECT ONLY) (C)
OTHER OPTIONS OF THE PUT EDIT STATEMENT (C)

Multiple Lists (C)
Other Options (C)

THE FO~AT OF PUT LIST OUTPUT (D)
Format Without The VFOffi.-1 Attribute (D)
Format With VFORM Attribute (D)
FIXED With VFOru1 Attribute (D)
FLOAT With VFORN Attribute (D)

FILE I/O TO ARBITRARY FILES (C-D)

SIMPLE USAGE OF GET AND PUT TO ARBITFARY
FILES (C)
PUT To Arbitrarv Files (C)
GET To Arbitrary Files (C)

DEFAULT FILE OPTIONS FOR GET AND PV7 STATE
MENTS
Special Properties Of SYSIN And SYSPRINT

Identifiers (C)
FILE ATTRIBUTES (D)

STREAM Versus RECORD Attribute (D)
INPUT Versus OUTPUT Attributes (D)
The PRINT Attribute (D)
The ENVIRONMENT Attributes (D)
The VFORM Attribute (D)
The APPEND Attribute (D)
The NOPAGE Attribute (D)

THE FILE DECLARATION (D)
THE OPEN STATEMENT (DIRECT OR COLLECT) (D)
"OPEN" ATTRIBUTE MERGING (D)
IMPLICIT FILE OPEN (D)

viii

Page

13-1

13-1
13-1
13-1
13-2
13-2
13-3
13-3

13-4
13-4
13-4
13-5
13-6
13-6
13-6
13-7
13-7
13-7
13-S
13-S
13-S
13-9
13-9
13-9
13-9
13-9
13-10
13-10
13-10
13-10
13-10
13-10
13-11

14-1

14-1
14-1
14-1

14-2

14-2
14-2
14-2
14-3
14-3
14-3
14-4
14-4
14-4
14-5
14-5
14-6
14-7

14.8
14.9
14.10
14.11
14.12
14.13

CHAPTER 15

15.1
15.2
15.3
15.3.1.
15.3.2

15.3.3
15.4
15.4.1
15.4.2
15.4.3
15.5
15.5.1
15.5.2
15.6
15.7

CHAPTER 16

16.1
16.2
16.3
16.3.1
16.3.2
16.3.3
16.3.4
16.3.5
16.3.6
16.4

16.5
16.6

CHAPTER 17

17.1
17.2
17.2.1

17.2.2
17.2.3
17.3
17.3.1

17.4
17.5
17.6

CONTENTS (Cont.)

THE GET STATEMENT (COLLECT OR DIRECT) (D)
THE PUT STATEMENT (COLLECT OR DIRECT) (D)
THE READ STATEMENT (COLLECT OR DIRECT) (D)
THE WRITE STATEMENT (COLLECT OR DIRECT) (D)
THE CLOSE STATEMENT (COLLECT OR DIRECT) (D)
THE CLOSE FILES STATEMENT (COLLECT OR

DIRECT) (D)

BLOCK STRUCTURE AND DECLARATION SCOPE
RULES (C-D)

THE BEGIN STATEMENT (COLLECT ONLY) (C)
PROGRAM BLOCKS WITH PROCEDURE STATEMENT (D)
SCOPE RULES FOR DECLARATIONS IN BLOCKS (D)

Default Vs. Explicit Declarations (D)
Scope Of Default And Explicit Declara

tions (D)
Labels On PROC And BEGIN Statements (D)

BLOCK INVOCATION OR TERMINATION (D)
How A Block Is Invoked (D)
Normal Termination Of A Block (D)
Abnormal Termination Of A Block (D)

THE BLOCK PROLOGUE AND EPILOGUE (D)
The Block Prologue (D)
The Block Epilogue (D)

RECURSIVE BLOCKS (D)
THE SNAP STATE~lENT (D I RECT OR COLLECT) (C)

STORAGE CLASSES (D)

DEFAULT STORAGE CLASS RULES (D)
DIFFERENCES AMONG THE STORA.GE CLASSES (D)
LIST OF STORAGE CLASSES (D)

AUTOMATIC Storage Class (D)
STATIC Storage Class (D)
CONTROLLED Storage Class (D)
BASED Storage Class (D)
PARAMETER Storage Class (D)
NAMED CONSTANT Storage Class (D)

THE ALLOCATE STATEMENT (DIRECT OR COLLECT)
(D)

THE FREE STATEMENT (DIRECT OR COLLECT) (D)
EXAMPLES OF CONTROLLED STORAGE (D)

SUBROUTINE AND FUNCTION PROCEDURES (C-D)

Page

14-7
14-8
14-9
14-9
14-10

14-10

15-1

15-1
15-1
15-2
15-2

15-3
15-3
15-4
15-4
15-4
15-4
15-5
15-5
15-5
15-5
15-5

16-1

16-1
16-1
16-1
16-2
16-3
16-3
16-3
16-3
16-4

16-4
16-4
16-4

17-1

WHY DO YOU NEED PROCEDURES? (C) 17-1
PROCEDURE ARGUMENTS AND PARAMETERS (C) 17-2

Difference Between Argument And
Parameter (C) 17-3

Real Versus "dummy" Arguments (C) 17-3
Data Types Of Arguments And Parameters (C) 17-3

FUNCTION PROCEDURES (C) 17-4
Further Examples of Function Procedures

(C) 17-5
THE PROCEDURE STATEMENT (COLLECT ONLY) (C) 17-5
~HE CALL STATEMENT (DIRECT OR COLLECT) (C) 17-6
INVOCATION OF A PROCEDURE AS A FUNCTION (C) 17-6

ix

17.7
17.7.1

17.B
17.B.1
17.B.2

17.B.3

17.B.3.1
17.B.3.2
17.B.3.3
17.B.4
17.9
17.10

CHAPTER IB

18.1
18.2
1B.2.1
18.2.2
IB.3
1B.4
IB.4.1
IB.4.2
18.4.3
18.5
1B.5.1
IB.5.2
1B.5.3
IB.5.4
IB.5.5
18.5.6
18.5.7
1B.5.B
1B.5.9
IB.6
IB.7
IB.B

CHAPTER 19

19.1
19.2
19.3
19.4
19.5
19.6
19.6.1
19.6.2
19.6.3
19.6.4
19.7
19.B
19.B.l
19.B.2
19.9

CONTENTS (Cont.)

THE RETURN STATEMENT (DIRECT OR COLLECT) (C)
Executing The End Statement Of A

Procedure (C)
MATCHING ARGUMENTS TO PA~£TERS (D)

Data Attributes Of The Parameters (D)
Rules For The Separate Declaration

For The Parameter (D)
Rules For Matching Arguments And

Parameters (D)
Case 1 -- No Dummy Is Created (D)
Case 2 -- A Dummy Argument is Created (D)
Case 3 -- Match Cannot Be Made (D)
Some Examples Of Argument Matching (D)

RECURSIVE PROCEDURES (D)
USE OF THE SNAP STATE~mNT (C)

ON-CONDITIONS AND ERROR HANDLING (C-D)

WHY DO YOU NEED ON-CONDITIONS? (C)
SOtJ'E INTRODUCTORY EXAMPLES (C)

Example Of An ERROR ON-unit (C)
Example Of An ENDFILE ON-unit (C)

THE ON STATEMENT (COLLECT ONLY) (C)
GOeD PROGRAMMING PRACTICES WITH ON-UNITS (C)

Normal Termination Of An On-unit (C)
~voiding ON-unit Recursion Loops (C)
The ONMSG Built-in Function (C)

LIST OF CONDITION NAMES (C-D)
The SUBSCRIPTRANGE Condition (C)
The STRINGRANGE Condition (C)
The ZERODIVIDE Condition (C)
The ENDFILE Condition (C)
The UNDEFINEDFILE Condition (C)
The RECORD Condition (D)
The ERROR Condition (C)
The CONDITION Condition (C)
The ATTENTION Condition (D)

THE SIGNAL STATEMENT (COLLECT ONLY) (C)
SCOPE OF AN ON-UNIT (D)
THE REVERT STATE~ENT (DIRECT OR COLLECT) (D)

BASED STORAGE AND POINTERS (D)

INTRODCCTION TO BASED STORAGE (D)
DECLARATION OF BASED STORAGE (D)
POINTER DATA TYPE (D)
TPE ADDP BUILT-IN FUNCTION (D)
USE OF POINTERS AND BASED STORAGE (D)
ADDITIONAL EXAMPLES (D)

Two POINTERs With Same BASED Variable (D)
BASED CHARACTER Strings (D)
BASED BIT Arrays (D)
Mixing Data Types (D)

COMPARISON OF POINTERS (D)
BASED ARRAYS (D)

Example Of BASED Array (D)
Example of BASED CHARACTER Array (0)

THE ADDR AND NULL BUILT-IN FUNCTIONS (D)

x

Page

17-7

17-7
17-7
17-7

17-8

17-8
17-9
17-9
17-9
17-10
17-10
17-11

18-1

18-1
18-1
18-1
18-2
18-3
18-3
18-4
18-4
18-4
18-5
18-5
18-5
18-5
18-6
18-6
18-6
18-7
18-7
18-7
18-8
18-8
18-9

19-1

19-1
19-2
19-2
19-2
19-3
19-3
19-3
19-4
19-4
19-4
19-5
19-6
19-6
19-6
19-7

19.9.1
19.9.2
19.9.3
19.10
19.10.1

19.10.2
19.10.2.1
19.10.2.2
19.11
19.11.1

19.11.2

19.11.3

19.12
19.13

19.14
19.15

19.15.1
19.15.2
19.16
19.16.1
19.16.2
19.17

CHAPTER 20

20.1
20.2
20.3
20.4

20.5
20.6

CHAPTER 21

21.1
21.2
21.3

CHAPTER 22

22.1
22.2
22.3
22.4
22.5
22.6

CHAPTER 23

23.1

CONTENTS (Cont.)

The NULL Built-in Function (D)
Use Of ADDR As POINTER Qualifier (D)
Use Of ADDR To "Increment" A POINTER (D)

POINTERS WITH DO STATEMENTS (D)
POINTER-qualified BASED DO-loop Variable

(D)
DO Variable With POINTER Data Type (D)
Simple E~ample (D)
Example With REPEAT Clause (D)

POINTERS WITH PROCEDURES (D)
PROCEDURE Invocations With BASED Argu

ments (D)
PROCEDURE Invocations With POINTER Argu

ments (D)
Function PROCEDURE Invocations With

RETUP~S(POINTER) (D)
BASED AND DIMENSIONED POlNTERS (D)
OTHER PLACES WHERE BASED VARIABLES ARE

USED (D)
VARIABLES IN BASED DECLARATIONS (D)
THE ALLOCATE STATEMENT (DIRECT OR COLLECT)

(D)
ALLOCATE For CONTROLLED Storage (D)
ALLOCATE For BASED Storage (D)

THE FREE STATEf.1ENT (DIRECT OR COL:r.,ECT) (D)
FREE For CONTROLLED Storage (D)
FREE For BASED Storage (D)

RESTRICTIONS ON BASED STORAGE (D)

A LIST PROCESSING EXAMPLE (D)

DESCRIPTION OF APPLICATION (D)
THE BASIC DECLARATIONS (D)
INITIALIZING THE RECORD CHAIN (D)
PROCEDURE TO ADD A "RECORD" TO THE CHAIN

(0)
LISTING THE CHAIN (D)
A FINAL EXERCISE (D)

OTHER STATEMENTS (B)

THE NULL STATEMENT (DIRECT OR COLLECT) (B)
THE STOP STATEMENT (DIRECT OR COLLECT) (B)
THE DELAY STATEMENT (DIRECT OR COLLECT) (B)

STRUCTURED AND GOTO-LESS PROGRAMMING (C)

TRADITIONAL PROGRAMMING WITH GOTOs (C)
STRUCTURED LOOPS (C)
TESTING CASES (C)
RESTRICTIONS ON GOTO STATEMENTS
USE OF GOTO WITH ON-UNITS (C)
MODULARITY (C)

BUILT-IN FUNCTIONS AND PSEUDO-VARIABLES
(B-D, R)

WHAT ARE BUILT-IN FUNCTIONS? (B)

xi

Page

19-7
19-7
19-7
19-8

19-8
19-9
19-9
19-9
19-10

19-10

19-10

19-11
19-12

19-12
19-12

19-13
19-13
19-13
19-13
19-14
19-14
19-14

20-1

20-1
20-1
20-2

20-3
20-4
20-4

21-1

21-1
21-1
21-1

22-1

22-1
22-1
22-1
22-2
22-3
22-3

23-1

23-1

23.2
23.3
23,4
23.5
23.6

23.6.1
23.6.2
23.6.3
23.6.4
23.6.5
23.6.6
23.6.7
23.6.8
23.6.9
23.6.10
23.6.11
23.6.12
23.6.13
23.6.14
23.6.15
23.6.16
23.6.17
23.6.18
23.6.19
23.6.20
23.6.21
23.6.22
23.6.23
23.6.24
23.6.25
23.6.26
23.6.27
23.6.28
23.6.29
23.6.30
23.6.31
23.6.32
23.6.33
23.6.34
23.6.35
23.6.36
23.6.37
23.6.38
23.6.39
23.6.40
23.6.41
23.6.42
23.6.43
23.6.44
23.6.45
23.6.46
23.6.47
23.6.48
23.6.49
23.6.50
23.6.51
23.6.52

CONTENTS (Cont.)

HOW BUILT-IN FUNCTI0NS ARE RECOGNIZED (B)
BUILT-IN FUNCTIONS WITE NO ARGUHENTS (C)
WHAT IS A PSEUDO-VARI~BLE? (C)
USE OF BASED ARGUHENTS (D)
ALPHABETICAL LIST OF BUILT-IN FUNCTIONS

AND PSEUDO-VBLES (R)
ABS Built-in Function
ACOS Built-in Function
ADDR Built-in Function
AFTER Built-in Function
ALLOCATION Built-in Function
ASIN Built-in Function
ATAN Built-in Function
ATAND Built-in Function
BEFORE Built-in Function
CEIL Built-in Function
COLLATE Built-in Function
COpy Built-in Function
COS Built-in Function
COSD Built-in Function
COSH Built-in Function
DATE Built-in Function
DIMENSION Built-in Function
DIVI Built-in Function
DrVF Built-in Function
EVERY Built-in Function
EXP Built-in Function
FLOOR Built-in Function
FLTED Built-in Function
HBOUND Built-in Function
HIGH Built-in Function
INDEX Built-in Function
LBOUND Built-in Function
LENGTH Built-in Function
LOC- Built-in Function
LOGIO Built-in Function
LOG2 Built-in Function
LOW Built-in Function
MAX Built-in Function
MIN Built-in Function
MOD Built-in Function
NULL Built-in Function
ONMSG Built-in Function
RANDOM Built-in Function
RANDOM Pseudo-Variable
REVERSE Built-in Function
SIGN Built-in Function
SIN Built-in Function
SIND Built-in Function
SINH Built-in Function
SOME Built-in Function
SQRT Built-in Function
STRING Built-in Function
STRING Pseudo-Variable
SUBSTR Built-in Function
SUBSTR Pseudo-Variable
TANH Built-in Function
TIME Built-in Function

xii

Page

23-1
23-2
23-2
23-2

23-3
23-3
23-3
23-3
23-3
23-4
23-4
23-4
23-5
23-5
23-5
23-5
23-6
23-6
23-6
23-6
23-6
23-7
23-7
23-7
23-7
23-8
23-8
23--8
23-9
23-9
23-9
23-9
23-10
23-10
23-10
23-10
23-10
23-10
23-11
23-11
23-11
23-11
23-12
23-12
23-13
23-13
23-13
23-13
23-13
23-14
23-14
23-14
23-14
23--15
23-15
23-15
23-15

23.6.53
23.6.54
23.6.55
23.6.56
23.6.57

CHAPTER 24

24.1
24.1.1
24.1.2
24.1.3
24.2
24.2.1
24.2.2
24.2.3
24.3
24.3.1
24.3.2
24.4
24.4.1
24.4.2
24.4.3

CHAPTER 25

CHAPTER 26

26.1
26.2
26.3
26.4
26.4.1
26.4.2
26.4.3
26.5
26.6
26.7

26.8
26.9

26.10
26.11

CHAPTER 27

27.1
27.1.1
27.1.2
27.1.3
27.1.4
27.1.5
27.2
27.2.1
27.2.2

CONTENTS (Cont.)

TRANSLATE Built-in Function
TRUNC Built-in Function
UNSPEC Built-in Function
UNSPEC Pseudo-Variable
VERIFY Built-in Function

CONVERSIONS AMONG COMPUTATIONAL DATA
TYPES (D)

CONVERSIONS FROM FIXED (D)
FIXED To FLOAT (D)
FIXED To CHARACTER (D)
FIXED To BIT (D)

CONVERSIONS FROM FLOAT (D)
FLOAT To FIXED (D)
FLOAT To CHARACTER (D)
FLOAT To BIT (D)

CONVERSIONS FROM CHARACTER (D)
CHARACTER To FIXED Or FLOAT (D)
CHARACTER To BIT (D)

CONVERSIONS FROM BIT (D)
BIT To FIXED (D)
BIT To FLOAT (D)
BIT To CHARACTER (D)

CPL ERROR MESSAGES (R)

QUESTIONS AND ANSWERS ABOUT CPL (R)

IS CPL THE SANE AS PL/I?
WHAT IS AN INTERPRETER?
WHAT ARE THE ADVANTAGES OF AN INTERPRETFR?
WHO CAN USE CPL?

Beginning Or Infrequent Programmers
PL/I Program Developers
Students Learning Programminq

HOW WAS CPL WRITTEN?
HOW DOES CPL WORK INTERNALLY?
WHY IS THE LIST COMMAND IMPLEMENTED AS

IT IS?
WHY ISN'T INTEGER DIVISION PERMITTED?
WHY IS "OPEN" A NOP IF THE FILE IS ALREADY

OPEN?
WHY AREN'T PL/I STRUCTURES IMPLEMENTED?
WHY ARE LINE CONTINUATIONS SO AWKWARD?

COMPARISON OF CPL WITH ANSI PL/I
STANDARD (R)

DESCRIPTION OF CPL SUBSET
Statements
Data Attributes
Formats
ON Conditions
Built-in Functions And Pseudo-variables

COMPATIBILITY WITH ANSI STANDARD
compatibility Philosophy
List of Incompatibilities

xiii

Page

23-16
23-16
23-16
23-17
23-17

24-1

24-1
24-1
24-1
24-1
24-2
24-2
24-2
24-2
24-3
24-3
24-3
24-3
24-3
24-3
24-4

25-1

26-1

26-1
26-1
26-2
26-3
26-3
26-3
26-3
26-3
26-3

26-4
26-4

26-4
26-5
26-5

27-1

27-1
27-1
27-2
27-3
27-3
27-4
27-4
27-4
27-5

CHAPTER 28

28.1
28.1.1
28.1.2
28.1.3
28.2
28.2.1
28.2.2
28.3

CHAPTER 29

29.1
29.1.1
29.1.2
29.1.3
29.2
29.2.1
29.2.2
29.3

CHAPTER 30

30.1
30.2
30.3
30.4
30.5

30.6

30.7

CHAPTER 31

CHAPTER 32

32.1
32.2
32.3

32.4
32.5
32.6
32.7
32.8

CONTENTS (Cont.)

RUNNING CPL UNDER TOPS-I0 (R)

HOW TO LOG ON AND RUN CPL
How To Log On
How To Use A Telephone Connection
Running CPL

HOW TO LOG OFF
How To Leave CPL
How To Log Off

FORMAT OF A TOPS-10 FILE-SPECIFICATION

RUNNING CPL UNDER TOPS-20 (R)

HOW TO LOG ON AND RUN CPL
How To Log On
How To Use A Telephone Connection
Running CPL

HOW TO LOG OFF
How To Leave CPL
How To I,og Of f

FORHAT OF A TOPS-20 FILE-SPECIFICATION

CPL PROGRAMMING EXN1PLES (B-D)

SIMPLE PROGRAM TO TYPE PRIME NUMBERS (B)
TABLE OF SINES AND COSINES (B)
MAKE A "CONCORDANCE OF LETTERS" (C)
HEXADECIMAL ADDING l-lACHINE (C)
PROCEDURE TO SIMULATE "VFORM" FILE

ATTRIBUTE (D)
FORMAT CPL PROGRAMS FOR OTHER PL/I

IMPLEMENTATIONS (C)
PROGFAM WHICH PRINTS ITS OWN SOURCE (D)

LIST OF CPL ABBREVIATIONS (R)

CPL SUMMARY (R)

PROGRM1 ELEMENTS
DIRECT-ONLY STATE~1ENTS
DECLARATIVE AND STORAGE ALLOCATION

STATEMENTS
ASSIGNMENT AND FLOW OF CONTROL STATEMENTS
ON CONDITIONS AND ERROR HANDLING
INPUT/OUTPUT STATEMENTS
PUT EDIT FORMAT ITEMS
SU~~RY OF BUILT-IN FUNCTIONS

xiv

Page

28-1

28-1
28-1
28-2
28-2
28···2
28-2
28-3
28-3

29-1

29-1
29-1
29-2
29-2
29-2
29-2
29-3
29-3

30-1

30-1
30-2
30-3
30-4

.30-5

30-7
30-9

31-1

32-1

32-1
32-2

32-2
32-3
32-3
32-4
32-5
32-6

TO THE READER

The experienced PL/I programmer may find
SUMMARY" sufficient to learn the CPL system.
chapter, "CPL PROGRAMMING EXAMPLES," which is
manual.

the last chapter, "CPL
He can also refer to the
near the end of the

This manual is intended to be both a tutorial and a reference manual.
Each chapter, and sometimes each section, will discuss features in a
general way which the beginner should be able to understand. Later in
the chapter or section there will follow more detailed and
comprehensive technical coverage of the subject. Therefore the reader
should approach this manual as follows: At the first reading, read
quickly, skimming over or skipping sections which you do not
understand. Later, when you need more technical details, you can go
back and read the more difficult sections.

To help you even further, each chapter and heading line is following
by a letter (A), (B), (C), (D) and (R), indication the type and level
of material. These codes have the following meanings:

(A) Beginning material (Chapter I only) which is suitable for
the person who has never programmed before or who has never
used CPL before.

(B) Material which covers the simple data types (FIXED and
FLOAT), arrays, built-in functions, and the simple
programming statements (IF, DO, DECLARE, labels, GOTO,
direct statements, END, GET LIST, PUT LIST).

(C) More advanced programming statements, which permit more
powerful programs to be written, including subroutine and
function PROCEDUREs, error handling with ON, PUT and GET to
arbitrary disk files, CHARACTER and BIT data types, and data
conversions.

(D) The most advanced CPL programming functions, including some
esoteric· things. Sections at this level discuss storage
classes, BASED storage and POINTERs, RECORD input/output to
arbitrary files, full scope and invocation rules for blocks
including recursive blocks, and the DEFAULT statement.

(R) These chapters are not meant to be read. They are to be
used as reference chapters by users at all levels. This
level includes the list of error messages, the list of
built-in functions and pseudo-variables and the comparison
of CPL with the ANSI PL/I standard.

xv

CHAPTER 1

INTRODUCTION TO CPL (A)

This chapter is for beginners -- people who have never used a computer
before, as well as experienced programmers who have never used CPL
before. After you read this chapter, you will be better prepared to
use the rest of the manual. When you read the rest of the manual,
keep in mind that each chapter contains both easy and difficult
material. Furthermore, many chapters are sufficiently self-contained
so that you can understand it without understanding preceding
chapters.

For this reason, you should always feel free to use refer to only
those parts of the manual that you need. You should never be afraid
to try to read a section, just because you have not understood the
preceding material.

If you do not know how to log on and start CPL running, please refer
to the chapter "Running CPL under TOPS-IO" or to the chapter "Running
CPL under TOPS-20."

1.1 DESK CALCULATOR MODE (A)

CPL can be used as a "desk calculator." This means that you can use
CPL to get the values of computations.

When you enter CPL, CPL types out an asterisk. This signifies that
CPL is ready foi commands, which are called "statements."

The first statement you will use is the "?" statement. (? is an
abbreviation for PUT LIST. The PUT statement is described in a later
chapter.)

For example, if you type the statement

?2+3

then CPL will type back the sum, 5.

You may specify any expression using the operators +, I, * (for
multiplication) and ** (for exponentiation). You may also use
parentheses, just as you would in a mathematical formula to specify
the order in which operations are to take place.

1-1

INTRODUCTION TO CPL (A)

For example, if you type

?(23.45-6)*{.0183+16.3487)

then CPL will type back the answer, 285.60414.

The "**" operator stands for exponentiation. M**N stands for M raised
to the power N. For example, if you type

?3.45**6.2

then CPL will type back the answer, 2160.122.

1.2 SCIENTIFIC NOTATION AND E-TYPE CONSTANTS (A)

You can express very large or very small constants using E-type
notation. For example, the constant 23.4E7 stands for 23.4 times 10
to the power 7, or 234000000.

The number following the letter E is the power of 10 with which the
first part of the number must be multiplied. This number may also be
negative. For example, 23.4E-5 is the same as .000234.

For example if you type the statement

?25£10 * 16

then CPL will type back 4E12.

1.3 BUILT-IN FUNCTIONS (A)

Suppose you want to compute the hypotenuse of a right triangle. The
formula for that computation, given the sides A and B, is to take the
square root of A**2+B**2. CPL provides a built-in function, called
SQRT, which allows you to compute square roots.

For example, if you type

?SQRT(3**2 + 4**2)

then CPL will type back 5, the length of the hypotenuse of a 3-4-5
triangle.

If you type ?SQRT(7.5**2 + 8.3**2)

then CPL types back 11.186599, the length of the hypotenuse of a right
triangle with legs 7.5 and 8.3.

CPL contains many built-in functions. They are all described in the
chapter entitled "BUILT-IN FUNCTIONS AND PSEUDO-VARIABLES."

Some of the most commonly used ones are:

1. SQRT{x) computes the square root of x.

1-2

INTRODUCTION TO cpt (A)

2. SIN (x) and COS (x) compute the sine and cosine, respectively,
of x, where x is an angle measured in radians.

3. SIND(x) and COSD(x) compute the sine and cosine,
respectively, of x, where x is an angle measured in degrees.

4. ABS(x) computes the absolute value of x.

5. LOG (x) computes the natural logarithm of x.

6. LOGIO(x) computes the common logarithm of x (the logarithm to
the base 10).

1.4 THE ASSIGNMENT STATEMENT (A)

You may wish to save the values of some intermediate computations, and
use those values later. You can do this by assigning the value of an
expression to a CPL variable.

For example, if you type the statement,

VALUE=23.4+15

then CPL computes the value of 23.4+15 and assigns that value to the
CPL variable VALUE. If you want to know the value of VALUE, you can
type

?VALUE

to which CPL will type out 38.4.

You can also use VALUE in another expression. For example, you can
type

?SQRT(VALUE+l)

and CPL will type out 6.2769419, the value of the square root of 39.4.

1.5 USE OF "COLLECT" STATEMENTS (A)

Up to this point, all statements which we have discussed have been in
"direct" or "desk calculator" mode.

There is another mode of typing in statements. A "collect" statement
is one which you type in preceded by a line number. Such statements
are not executed immediately; instead, they are saved as part of your
program, to be executed later with your whole program.

Suppose, for example, you wish to write a program which computes both
the area and hypotenuse of a right triangle with sides A and Band
types out these values. You can type in the 2 statements:

10 ?A*B/2
20 ?SQRT(A**2 + B**2)

1-3

INTRODUCTION TO CPL (A)

These two statements are typed in with line numbers (10 and 20). As a
result, they are not executed immediately; instead they are stored
with the program.

You can list your collected program by typing "LIST". If you type
"LIST", then CPL will type out the two statements which you have just
typed in with the line numbers 10 and 20.

Now, you can execute the program by doing something like the
following:

A=8.4
B=35.3
XEQ

The first two lines assign the values 8.4 and 35.3 to A and B,
respectively. The third line, the "XEQ" statement, tells CPL to
execute the collected program. The two statements which are in the
collected are executed, and CPL types out the values

148.26 36.285672

The first of these figures, 148.26, is the area, computed by statement
10. The second, the hypotenuse, is computed by statement 20.

You can now type the following:

A=10.4
B=13.5
XEQ

and CPL will type out the values

70.2 17.04142

Note that there is no longer any need to retype the the two formulas
in statements 10 and 20. All you have to do is change the values of A
and B and they type XEQ, and your program will be executed. This can
save you a lot of time if you wish to compute the same formulas over
and over with different values of the variables.

1.6 MODIFYING YOUR PROGRAM (A)

If you have followed the example given above, your collect program
contains two statements. Let us see how you can modify your program:

5 ?'THE VALUES OF A AND B ARE',A,B
6 PUT SKIP
10 ?'THE AREA AND HYPOTENUSE ARE', A*B/2
LIST

The first two statements have line number 5
inserted into your program before line 10.
the line number 10, and so it will replace
program with line number 10.

1-4

and 6, so they are
The third statement has

the statement in your

INTRODUCTION TO CPL (A)

The last line is the LIST statement. It will type out your program as
it stands currently:

5. ?'THE VALUE OF A AND B ARE',A,B;
6. PUT SKIP;

10. ?'THE AREA AND HYPOTENUSE ARE',A*B/2;
20. ?SQRT(A**2+B**2);

NOw, if you type

A=5
B=12
XEQ

then CPL will type out the following:

THE VALUE OF A AND BARE 5 12
THE AREA AND HYPOTENUSE ARE 30 13

You can entirely erase a statement by means of the ERASE statement.
For example, if you type "ERASE 20", then CPL will delete statement
20.

You can erase your entire program by typing "ERASE THRU "

1.7 STATEMENTS LABELS AND THE GOTO STATEMENT (A)

Suppose you want to type out a table of numbers and their square
roots. You could type in the following program:

10.
20.
30.
40.
50.

1:;::0;
LOOP: 1=1+1;

PUT SKIP;
? I, SQRT (I) ;
GO TO LOOP;

Here is what each of the statements in this program does:

Statement 10 is an assignment statement. It assigns the value 0 to
the variable I.

Statem~nt 20 is another assignment statement, which increases the
value of I by 1. It does this by computing the value of 1+1 and
assigning that ~alue as the new value of I.

Statement 30 types out a carriage return.

Statement 40 types out the values of two quantities: I and SQRT(I}.

Statement 50 is a GOTO statement. It indicates that control is to
transfer to the statement which has the statement label LOOP.
Statement 20 is such a statement -- the assignment statement 1=1+1 is
preceded by "LOOP:". The colon (:) tells CPL that the preceding
identifier is to be considered a statement label for that statement.
Therefore, after statement 50 is executed, CPL go back and re-execute
statement 20, and continue executing from there.

1-5

INTRODUCTION TO CPL (A)

If you type "XEQ", then you will be able to execute the above program.
However, you should be aware that it contains what is known as an
"infinite 100p.1I An infinite loop is one which contains no conditions
for stopping. The above program will go on and on forever,
incrementing I by 1 and typing out the square root of the new value of
I.

If you do execute the above program it will never stop by itself. If
you wish to stop it, then you mus~ type Control-C.

1.8 THE IF STATEMENT (A)

The IF statement provides a means for conditional execution. You can
specify that if a certain thing is true, then CPL should do a certain
thing.

For example, let us replace statement 50 in the last example with the
statement

50. IF 1(=10 THEN GOTO LOOP ;

This statement tells CPL to do the following: Check to see whether
the value of I is less than or equal to 10. If it is, then GOTO the
statement with label LOOP. If it is not, then continue with the next
statement. (In this case there is no next statement, so execution
would stop.)

with this program modification, if you type XEQ, then the program will
compute the square roots of all the numbers between 1 and 10 and print
them out. Then the program will stop.

The program still contains a "loop," but it is not an "infinite 100p.1I

1.9 THE DO STATEMENT (A)

Another way to write a program containing a loop is to use the DO
statement. For example, suppose you erase the above program and type
in the following program:

10.
20.
30.
40.

DO 1=1 TO 20;
PUT SKIP
?I,SQRT(I)
END

The DO statement in statement 10 and the END statement in statement 40
enclose a group of statements known as a DO-group.

The DO statement in statement 10 says to do the following:

Execute all the statements in the DO-group. The first time you
execute them, let I = 1. The next time, let 1=2. Continue executing
them until 1=20, then transfer control to the statement following the
END statement. (In this case there is no such statement, so execution
will stop.)

1-6

INTRODUCTION TO CPL (A)

If you type XEQ, then the above program will print out a table of
square roots of all numbers between I and 20, and then stop.

The DO statement is a complex statement with many optional
specifications. A complete description, as well as further examples,
will be found in the chapter entitled -"THE DO AND END STATEMENTS."

1-7

CHAPTER 2

BASIC CPL LANGUAGE ELEMENTS (B)

2.1 THE CPL CHARACTER SET (B)

CPL recognizes all 128 ASCII characters. Not all of these, however,
may appear in CPL programs. The rules governing the use of characters
are explained below.

2.2 ALPHABETIC, NUMERIC AND ALPHAMERIC CHARACTERS (B)

CPL uses all the letters of the alphabet in upper and lower cases (A-Z
and a-z), and the digits (0-9). Thus there are 62 alphameric
(alphanumeric) characters.

2.3 SPECIAL CHARACTERS AND OPERATORS (B)

2.3.1 Special Characters (B)

The following are the special characters used
descriptions:

MEANING

by CPL,

CHAR

<blank>
<tab>
=

No meaning; separates elements of a statement
Treated like a blank except in character strings
"Equal to" or assignment operator

+

*
/
(
)

&

>
<

?

Plus operator
Minus operator
Asterisk or Multiplication operator
Slash or Division operator
Left (or open) parenthesis
Right (or close) parenthesis
Comma
Decimal point or period
Colon
Semicolon
"Not" operator
"Or" operator
"And" operator
"Greater than" operator
"Less than" operator
Apostrophe or quotation mark
Question mark
Break character

2-1

with

BASIC CPL LANGUAGE ELEMENTS (B)

2.3.2 Two-character OperatorE (B)

The following operators require two characters:

OPERATOR MEANING

**
>=
<=

">
"<
->
! !
/*
*/

Exponentiation operator
"Greater than or equal to" operator
"Less than or equal to" operator
"Not equal" operator
"Not greater than" operator
"Not less than" operator
Pointer qualifier
Concatenation operator
Start of comment
End of comment

2.4 CHARACTER-STRING-ONLY CHARACTERS (B)

All the characters not discussed in preceding paragraphs are illegal
in CPL programs, except inside character strings.

All ASCII characters may appear in character string constants in your
program with the following exceptions: The carriage return (octal 15)
and ilne feed (octal 12) may not appear in a character string
constant.

It was mentioned above that CPL will treat a "tab" character appearing
in your program as a blank. However, when you put a tab character
into a character string constant, CPL does not change it to a blank or
to a sequence of blanks; it remains as a single tab character.

2.5 IDENTIFIERS (B)

All variable names and keywords are identifiers.

An identifier contains between 1 and 31 characters, subject to the
following rules:

1. The first character must be a letter.

2. All other characters must be alphabetic, numeric, or the
break character ().

2.6 VARIABLE NAMES (B)

You may use any identifier as a variable name.

If you have an upper/lower case terminal, and if you use two variable
names which differ only in the case of the letters, then CPL will
treat them as different variable names. For example, CPL will treat
ABC, abc, AbC and aBc as four distinct variables.

2-2

BASIC CPL LANGUAGE ELEMENTS (B)

CPL has no reserved words. For example, you may use the identifier IF
in the IF statement, and, in the program (or even the same statement)
you may use it as a variable name. CPL will determine from the
context of the identifier whether you are referring to the keyword or
to the variable name.

There is one partial exception to this rule concerning reserved words.
The identifiers SYSIN and SYSPRINT are the default filenames used in
the GET and PUT statements. Although you could, if you wanted to, use
the DECLARE statement to give these identifiers attributes other than
FILE, the PUT and GET statements without any FILE option and the ?
statement would no longer work. For this reason, you are advised to
treat these identifiers as reserved.

2.7 KEYWORDS (B)

Keywords are also identifiers. In CPL, all keywords are less than 16
characters long, and contain only letters.

A keyword will be recognized regardless of whether the letters are
upper case, lower case, or mixed. Thus, DECLARE, DeClArE and dEcLaRe
are all the same keyword.

2.8 COMMENTS (B)

You may put comments into any CPL statement. The comment is legal
anywhere that a blank is legal. You begin the comment with the
characters "/*" and you end the comment with the characters "*/".

EXAMPLE: A=/*COMMENT*/A+l; is the same as A=A+l;.

2.9 ABBREVIATIONS AND ALTERNATE KEYWORDS (B)

Some long keywords have abbreviations and alternate forms.

For example, EXECUTE may be typed XEQ, and DECLARE may be typed DCL.

A later chapter, "List of All CPL Abbreviations" provides a reference
on CPL abbreviations.

2-3

CHAPTER 3

PROGRAMMING ELEMENTS (B)

3.1 DIRECT AND COLLECT STATEMENTS (B)

A "direct" statement is entered without a line number.
the statement immediately.

CPL executes

For example, the statement:

PUT LIST(A+B)

would be executed immediately.

You enter a "collect" statement with a
execute such a statement immediately;
statement with your stored program, to
command. For example, the statement

10. PUT LIST(A+B)

line number. CPL will not
instead, CPL will store such a
be executed later at your

would be stored as your line 10, and executed later with your stored
program.

3.2 TERMINATING SEMICOLON (B)

All CPL statements end with a semicolon. If you type in a line
without ending it with a semicolon, then CPL will insert one for you.

3.3 LINE NUMBERS (B)

"Collect" statements, described above, are indicated by means of a
line number.

A line number lies in the range 1 to 9999.99. It may have up to 2
fractional digits.

3.4 MULTIPLE STATEMENTS PER LINE (B)

You may type in several statements per line,separating them with
semicolons. For example, the statements

10. 1=5; J=lO; PUT LIST(I+J)

will all be stored as your line 10.

3-1

PROGRAMMING ELEMENTS (B)

3.5 CONTlNUING STATEMENTS ON ADDITIONAL LINES (B)

If a statement is too long to fit on one line, then you may continue
it on an additional line by the following method: If the last
character on the line is an ampersand ("&"), then CPL will allow you
to continue the statment on the following line.

The ampersand character is not considered to be part of the statement
text.

The ampersand may appear in the following positions:

1. Anywhere where a blank character can be used as a separator

2. Anywhere in a CHARACTER or BIT string constant

The ampersand may not split an identifier or a numeric constant.

Statements may be continued on several lines in this manner.

NOTE: This method of continuing statements on additional lines is not
standard PL/I. Also, it is a very ugly feature which I put in under
duress. Most users should avoid using it.

3.6 STATEMENT NUMBERS (B)

Sometimes it is necessary to refer specifically to one of several
statements appearing on the same line. A statement number provides
this capability.

The first statement on line 10.33 will have the statement number 10.33
or 10.33+0. The next statement will have the statement number
10.33+1, and so forth.

Note, in addition, that the THEN clause of an IF statement and the
on-~nit clause of an ON statement have separate statement numbers.

For example, consider the line

10.33 1=5; IF J)I THEN 1=6; ELSE GO TO Yi K=I+Ji

In this line, the following are the individual statements:

10.33+0
10.33+1
10.33+2
10.33+3
10.33+4

1=5
IF J)I
THEN 1=6
ELSE GO TO Y
K=I+J

3-2

PROGRAMMING ELEMENTS (B)

3.7 PLACEMENT OF COLLECT STATEMENTS (B)

The user may enter collect statements in any order he wishes. When he
does, they will be inserted into his program in the order specified by
his line numbers.

3.8 REPLACING COLLECT STATEMENTS (B)

If a user types in a statement with the same line number' as a line
which already exists in his program, then the new line replaces the
old.

3-3

CHAPTER 4

PROGRAM MANIPULATION STATEMENTS (B)

You will use the statements in this chapter to manipulate your
program, as well as to perform other general functions associated with
the CPL system.

You USe the LIST statement to list your program, the ERASE statement
to erase parts of your program, the NUMBER statement to cause CPL to
generate line numbers automatically, the SAVE statement to save your
program on disk, the LOAD and WEAVE statements to recall stored
programs from disk, the EXECUTE (XEQ) and CONTINUE statements to
execute your program, the BREAK and NOBREAK statements to control
debugging breakpoints, and the MONITOR statement to leave CPL and
return to the monitor.

4.1 THE LIST STATEMENT (DIRECT ONLY) (B)

You use the LIST statement to list your stored program.

Format: LIST [specification [,specification •••]]

where the optional "specification" has the format:

1. line-number

2. line-number THRU line-number

3. THRU line-number

4. line-number THRU

5. THRU ...

You use the unmodified LIST command to list your entire program. By
means of specifications containing line numbers, you can specify which
statements that you want listed. You may use the phrase "THRU "to
indicate that you wish to list to the end of the program.

For example, the statement

LIST 2, 3 THRU 5, 2000.55 THRU

will list statement 2, all statements in the range 3 to 5, and all
statements from 2000.55 to the end of the program.

4-1

PROGRAM MANIPULATION STATEMENTS (B)

If you specify a line number which does not exist in the program, then
CPL will list the statements immediately preceding and immediately
following the specified line number. Thus, for example, to find out
the last statement of your program, type "LIST 9999.99."

4.2 THE ERASE STATEMENT (DIRECT ONLY) (B)

The ERASE statement is used to erase parts of your stored program.

Format: ERASE specification [,specification]

where the specification has the same format as for the LIST statement.
(But note that here the specification is required.)

This statement is used to erase statements in the stored program.

ERASE is similar to LIST except that it deletes statements rather than
listing them. One other difference is that if an invalid line number
is specified, then ERASE will take no action other than typing an
error message.

You may not erase individual statements in a line. You must erase an
entire line.

4.3 THE NUMBER STATEMENT (DIRECT ONLY) (B)

Format: NUMBER line-number [BY increment]

When you are typing in a long program, you may find it annoying to
have to enter a line number at the beginning of each line. By means
of the NUMBER statement, you can cause CPL to generate line numbers
for you.

The "line-number" argument to the statement specifies the first line
number which CPL will generate. CPt will generate subsequent line
numbers by adding 10.00 to the preceding line number, unless you have
specified a different increment in the "BY" clause of the NUMBER
statement.

After you have entered the NUMBER statement, CPL will prompt you with
line numbers. Every statement entered will be in coll€ct mode.

In order to leave automatic line-numbering mode, do the following:
After CPL has prompted you with a line number, type a single "I"
character, followed by a carriage return. The terminal will then
return to normal mode.

EXAMPLE: The statement NUMBER 3 BY 1.5; will cause CPL to generate
line numbers starting with 3 and continuing with 4.5, 6.0, 7.5, etc.

4-2

PROGRAM MANIPULATION STATEMENTS (B)

4.4 THE SAVE STATEMENT (DIRECT STATEMENT) (B)

Format: SAVE 'file-id'

This statement is used to save a stored program on disk. It is
necessary to specify only the filename in the file-idi the device
will default to DSK, and the filename extension will default to CPL.

If you wish, however, you may specify a full file-id, including a
device name, filename and extension, and project-programmer number.

You may edit this file on disk using any of the standard DEC editors,
and then use the LOAD command to reload the edited file into CPL.

EXAMPLE: The statement "SAVE 'DSKC:TX.XXX[10,4433] 'i" causes the
current collected program to be saved on disk in the specified file.

4.5 THE LOAD STATEMENT (DIRECT ONLY) (B)

FORMAT: LOAD 'file-id' [NUMBER line# [BY incr]]

This statement is used to load the specified program from disk into
CPL. Default conventions for the file-id are the same as in the SAVE
statement.

The arguments to the NUMBER option, if specified, are the same as the
arguments to the NUMBER statement, described above. The NUMBER option
specifies how the statements in the file are to be numbered.

If the statements in the file already have line numbers, then the
NUMBER option need not be used; if it is used, then the generated
line numbers supersede the line numbers in the file. If the
statements in the file do not have line numbers, then the NUMBER
option must be used.

Before executing the LOAD statement, CPL erases all storage and
program variables in the old program, and types out the message "ALL
STORAGE RESET" to remind you that your old variables are no longer
defined.

4.6 THE WEAVE STATEMENT (DIRECT ONLY) (B)

Format: WEAVE 'file-id' [NUMBER line [BY incr]]

You use this statement when you wish to combine two separate files
into one program. The WEAVE statement is like the LOAD statement,
except that CPL does not erase your old program before loading the new
one.

Usually you will use the NUMBER option with the WEAVE statement, since
that IS the only way you can control where, in the existing program,
CPL will place the new program.

For example, if your existing program runs through statement 2000,
then you may load the new program with "WEAVE 'name' NUMBER 2010" to
load the new program starting at line 2010.

4-3

PROGRAM MANIPULATION STATEMENTS (B)

4.7 THE EXECUTE STATEMENT (DIRECT ONLY) (B)

Abbrev: XEQ for EXECUTE

Format: XEQ [FROM statement-number]

This statement causes your collected program to be executed.

If only XEQ is typed, then execution begins with the first statement
of the program. If the FROM option is used, then execution begins
with the specified statement number.

When the FROM option is used to specify a specific statement number,
and that statement happens to have a breakpoint set, then the
breakpoint will not be taken for the first execution of that
statement. Of course, if control returns to that statement, then a
breakpoint will occur.

Prior to beginning execution of your program, XEQ will perform some
initialization functions which are usually meaningful only if you are
restarting a program. These initialization functions are:

1. All BEGIN and PROCEDURE blocks are terminated.

2. All files are closed.

3. All storage allocated by ALLOCATE statement for CONTROLLED
and BASED identifiers is released. All POINTER variables
pointing to such storage are made invalid.

If you wish to keep CPL from performing these
functions, then use the CONTINUE statement.

4.8 THE CONTINUE STATEMENT (DIRECT ONLY) (B)

Abbrev: CONT for CONTINUE

Format: CONTINUE [FROM statement-number]

initialization

If your program has stopped executing due to an error or to a
breakpoint, then you may make the changes you desire and continue
executing the program by using the "CONTINUE" statement.

If you specify no FROM clause with the CONTINUE statement, the CPL
will restart execution with the statement which contained the error or
on which the breakpoint occurred. If you wish to continue from a
different statement, you must specify it with the FROM clause.

If you erase or replace the statement which contained the error or
which caused the breakpoint, then you must use a FROM clause with the
CONTINUE statement.

4-4

PROGRAM MANIPULATION STATEMENTS (B)

4.9 THE BREAK STATEMENT (DIRECT ONLY) (B)

Format: BREAK statement-number [,statement-number ...]

This statement specifies a list of one
flagged as having "breakpoints." If
statement, then CPL will not execute the
type a "breakpoint" message and pass
examine values of variables, set values,

or more statements to be
control passes to any such
statement: instead, CPL will
control to you. You can then
and even modify your program.

You may continue execution of your program from the by typing
CONTINUE.

If you ERASE or replace a line in your program, then all breakpoints
for statements on that line are removed.

4.10 THE NOBREAK STATEMENT (DIRECT ONLY) (B)

Format: NOBREAK [statement-number [,statement-number ...]]

This statement removes breakpoints from specified statements.

If no statement numbers are specified, then all breakpoints in the
program are removed~

4.11 THE MONITOR STATEMENT (DIRECT ONLY) (B)

Abbrev: HON for MONITOR

Format: MONITOR

Execution of this statement causes CPL to relinquish control and
return you to the monitor level.

To continue from where you left off, you may type the monitor command
"CONTINUE".

4-5

CHAPTER 5

THE DECLARE AND DEFAULT STATEMENTS (B-D)

This chapter summarizes the formats of these two statements. The
meanings of the various data types and attributes are given in later
chapters. Therefore, this chapter can be skipped or skimmed and
referred to later.

5.1 THE DECLARE STATEMENT (COLLECT ONLY) (B-D)

Abbrev: DCL for DECLARE

The following is the basic format of the DECLARE statement.
more sophisticated formats, see the later section,
Declarations and Attribute Factoring."

Format:
or

DECLARE identifier-name [attribute-list] ;
DECLARE id-name (dimension-list) [attribute-list];

For the
"Multiple

This statement is used to specify a list of attributes or properties
that are to be associated with the variable. The attributes specify
whether the variable is to be integer or floating point, a character
or bit string, an array or scalar, and how and when storage for the
variable is allocated.

5.1.1 Data Type Attributes (B)

The following attributes are used to specify data types:

1. FIXED -- to specify that the variable is
PL/I terminology, this specifies that
BINARY(35) FIXED.)

an integer.
the variable

(In
is

2. FLOAT -- to specify that the variable is a floating point
number. (In PL/I terminology, this is fully expressed as
BINARY(27) FLOAT.)

3. CHARACTER (length) [VARYING] -- to specify that the variable
is a character string of the specified (maximum) length.

4. BIT (length) [VARYING] -- to specify that the variable is a
bit string of the specified (maximum) length.

5-1

S.

THE DECLARE AND DEFAULT STATEMENTS (B-D)

POINTER -- to specify that the variable is have as a value
the address of a data item. This is a "non-computational"
data type, in that arithmetic operations cannot be performed
on it.

Examples:
10. DECLARE A FIXED ;
20.
30.
40.

DECLARE B FLOAT ;
DECLARE C CHARACTER(lS);
DECLARE D BIT(S) VARYING;

S.1.2 ARRAYS (8)

Arrays are specified by enclosing the list of subscript ranges in
parentheses following the identifier name.

Examples:
10. DECLARE A (10) ;
20.
30.
40.
SO.

DECLARE 8(S,6);
DECLARE C(O:lO) ;
DECLARE D(lO) FIXED;
DECLARE E(S,S) CHARACTER (10) VARYING ;

The use of arrays is discussed in a later chapter.

S.1.3 Alternate Method For Specifying Arrays (C)

Instead of placing the list of dimension bounds in parentheses
following the identifier name, it is possible to specify the dimension
list by means of the attribute DIMENSION(dimension-list).

For example, the following two statements are equivalent:
10. DECLARE A(S,0:6) BIT(lO) ;
10. DECLARE A BIT(lO) DIMENSION(S,0:6) ;

S.1.4 Storage Class Attributes (D)

The following attributes are used to specify the storage class:

1. AUTOMATIC -- this attribute indicates that storage is to be
allocated when the block in which the declaration appears is
invoked.

2. STATIC -- this attribute indicates that storage is to be
allocated immediately when the declaration is typed in on the
terminal.

3. CONTROLLED -- this attribute indicates that allocation is
under explicit control of the programmer.

4. BASED -- this attribute specifies that each reference to the
identifier will be accompanied by a POINTER qualifier to
specify the address of the storage area.

S-2

THE DECLARE ANO DEFAULT STATEMENTS (B-D)

5. PARAMETER -- this attribute specifies that the declaration
lies inside a PROCEDURE block, and that the identifier also
appears in the parameter list of the PROCEDURE statement.
(It is not necessary to specify PARAMETER, unless you have
specified "*" for a string length or an array bound.)

5.1.5 Other Attributes (D)

1. BUILTIN -- this attribute indicates that CPL should consider
the identifier to be one of its built-in functions or
pseudo-variables. Such a declaration is legal only if the
identifier is a real CPL built-in function name. Normally
you would specifically declare an identifier to have the
BUILTIN attribute only if you wish to make this usage clear
to another person reading your program. See the chapter on
built-in functions for further details on recognition.

2. NONVARYING -- this attribute may be specified with either
CHARACTER or BIT. It is the opposite of VARYING, and its
specification has no effect since it is the default.

3. The file attributes are described in the chapter on
input/output to arbitrary files. These attributes are:
INPUT, OUTPUT, STREAM, RECORD, PRINT and and the ENVIRONMENT
attributes VFORM, APPEND and NOPAGE.

5.1.6 Defa~lt Attributes (B)

If a variable is referenced without appearing in a DECLARE statement,
then it will be given the default attributes FLOAT and AUTOMATIC.

(The identifiers SYSIN and SYSPRINT, which are used in conjunction
with the GET and PUT statements, are exceptions to the above rule.)

If a variable appears in a DECLARE statement, but no data type is
specified, then it will be FLOAT. If it appears in a DECLARE
statement but no storage class is specified, then it will be STATIC.

These defaults can be changed by means of the DEFAULT statement.

5.1.7 Multiple Declarations And Attribute Factoring (C)

CPL permits many variables to be declared in the same DECLARE
statement. This is done by separating the declarations with commas,
as in the following statement:

10. DECLARE A{lO}, B CHAR{5}

5-3

THE DECLARE AND DEFAULT STATEMENTS (B-D)

It is also possible to "factor" out attributes to simplify the DECLARE
statement. For example,

10. DECLARE (A,B,C) (10) BIT(l) ;

is the same as

10. DECLARE A(lO) BIT(l), B(lO) BIT(l), C(IO) BIT(l)

Similarly, these two statements have the same effect:

10. DECLARE (A(lO), B VAR) CHAR(S) ;
10. DECLARE A(lO) CHAR(S), B VAR CHAR(S)

Finally, attributes can be factored to any level. For example,

10. DECLARE ((A FIXED, B) (10), (C CHAR(S),D BIT(3))VAR) STATIC

has the same effect as

10. DECLARE A(lO) FIXED STATIC, B(lO) STATIC,
C CHAR(S) VAR STATIC, D BIT(3) VAR STATIC;

S.2 THE DEFAULT STATEMENT (COLLECT ONLY) (D)

Abbrev: DFT for DEFAULT

Format: DEFAULT (range-spec) default-spec ;

where the "range-spec" specifies a group of letters of the alphabet,
and default-spec specifies the default attributes. They are described
in more detail in the following paragraphs.

This specifies that all identifiers beginning with one of the
specified letters have the default attributes.

S.2.1 The Range-spec (D)

The range-spec specifies a letter or group of letters to which the
defaults apply. The specification RANGE(letter) gives a single letter
for which the defaults will apply. Th9 specification
RANGE(letter:letter) specifies a range of letters for which the
defaults will apply. The specification RANGE(~) indicates that the
default applies to all identifiers.

For example, RANGE(I) indicates that the defaults will apply to all
identifiers beginning with the letter I, while the specification
RANGE (A:D) indicates that the defaults apply to all identifiers
beginning with the letters A through D.

It is possible to combine such range specifications by separating them
with! (the "or" symbol). For example, the specification

RANGE(A:D) !RANGE(M) !RANGE(Z)

S-4

THE DECLARE AND DEFAULT STATEMENTS (B-D)

indicates that the defaults will apply to all identifiers beginning
with the letters A, B, C, D, M and Z.

5.2.2 The Default-spec (D)

This part of the DEFAULT statement specifies the
that will apply to the identifiers beginning
letters.

default attributes
with t~e specified

The default-spec may contain a data type attribute or a storage class
attribute or both. The data type attribute must be either FIXED or
FLOAT, and the storage class attribute must be either STATIC or
AUTOMATIC.

5.2.3 Conflicting DEFAULT Statements (D)

If two default statements in a program indicate conflicting attributes
for the same letter of the alphabet, then the one later in the program
takes precedence.

5.2.4 Default Rules In Absence Of DEFAULT Statement (D)

As stated above in the discussion of the DECLARE statement, each CPL
program begins with the following implicit DEFAULT statement:

DEFAULT (RANGE(A:Z)) FLOAT,AUTOMATIC ;

Any DEFAULT statement which you enter will take precedence over this
implicit statement.

5.2.5 Examples (D)

1. The I-N rule

Many programmers are familiar with the rule that all variables
beginning with the letters I-N are FIXED, while all others are FLOAT.
This rules holds in all FORTRAN implementations, as well as in some
IBM PL/I implementations.

YOt' may effect this rule in CPL by inserting the DEFAULT statement

DEFAULT (RANGE(I:N)) FLOAT

at the beginning of your program.
2. All Variables STATIC

You may be able to save some execution time in your program by making
the default for all variables STATIC rather than AUTOMATIC. This is
done by means of the statement:

DEFAULT (RANGE(*)) STATIC;

5-5

THE DECLARE AND DEFAULT STATEMENTS (8-D)

This may save some execution time in your program if your program
contains a number of declarations inside BEGIN or PROCEDURE blocks
which are frequently invoked. This is true because it is necessary
for CPL to allocate AUTOMATIC storage each time the block each time
the block is invoked, but STATIC storage is allocated only once.

5.2.6 Overriding Defaults With DECLARE Statement (D)

Of course, the rules specified by a DEFAULT statement are only
defaults. If a DECLARE statement specifies a data type or a storage
class, then it overrides the data type or storage class specified by a
DEFAULT statement.

5-6

CHAPTER 6

DATA TYPES (B-D)

Each CPL variable has a "data type. ", The data type simply specifies
what kinds of values the variable can take on. For example, a FIXED
variable can take on integer values. A FLOAT variable can take on
real numbers as values. A CHARACTER variable can take on strings of
characters as values. A BIT variable can take on strings of bits as
values. A POINTER variable can take on addresses as values.

Unless you specify otherwise, all CPL variables have the FLOAT data
type. You may use a DECLARE sta~ement to specify ~ different data
type for a specific identifier, or you may use the DEfAULT to change
the default from FLOAT to FIXED in all or selected cases, These
statements are described in a preceding chapter.

6.1 "fIXED" DATA TYPE CB)

A variable having the attribute FIXED can have only integers as
values. Its range of values is from -34359738368 to 34359738367.

If a non-integer value is assigned to a FIXED variable, then the value
is first "truncated" to an integer value. This means that any
fractional part is removed.

For example, the value 3.7 would be truncated to the value 3 before
assignment to a FIXED variable. Similarly, the value -20.5 would be
truncated to -20. Note that no rounding takes place.

6.2 "FLOAT" DATA TYPE (B)

A variable having the FLOAT data type can assume fractional values.

You represent CPL floating point constants by a form of scientific
notation which specifies a mantissa and an "exponent" (power of 10).
For example, 23.87E5 stands for the value 2387000 (since the "5" is a
power of 10 to be multiplied by 23.87), and l42E-8 stands for the
value .00000142 (where here the power of 10 is -8).

FLOAT values may be, in absolute value, as high as 1.70l4ll8E+38.

6-1

DATA TYPES (B-D)

6.3 "CHARACTER" DATA TYPE (C)

Abbrev: CHAR for CHARACTER, VAR for VARYING

A variable having this data type does not take numeric values.
Instead, the value of such a variable will be a character string -- a
string of ASCII characters.

In CPL, character string constants are enclosed in single quotes. An
example is 'CHARACTER-STRING-VALUE'. If a character string constant
is to contain the character "single-quote", it is represented by two
single quotes, as in the example 'DON' 'T GO'.

You may precede a character string constant by a parenthesized
integer. This integer is called a "repetition factor" and specifies
that the character string constant is to be repeate~ that number of
times. For example, the character str ing constant (5)' AB' is the same
as 'ABABABABAB'.

when a character string variable is declared in a DECLARE statement,
you must make two choices:

1. You must choose the length of the character string values the
string can assume.

2. You must decide whether the variable is to have VARYING or
NONVARYING length.

For example,

10. DECLARE A CHAR(20), V CHAR(30) VARYING;

specifies that A and V are to be character string variables. The
variable A is NONVARYING (the default), and its length is 20, meaning
that the value of A will always bp a string of exactly 20 characters.

The variable V in the above example is VARYING and has a length of 30.
In this case, the length should be interpreted as a maximum length -
V can equal a string of characters of length 30 or less. This length
can even be zero, in which case the value is called the "null
character string."

6.4 "BIT" DATA TYPE (C)

In many ways, the BIT data type is similar to the CHARACTER data type.
Variables with the BIT data type take as values strings of bits -
that is, each element of the string must be a 0 or 1.

In CPL, a BIT string constant is written by enclosing a string of O's
and lis in single quotes, followed by the letter "B". For example,
the BIT string constant '1101001'B represents a string of 7 bits.

Notice that that BIT strings are represented by numbers in the binary
number system. CPL permits you to specify the same bit strings by
means of numbers in the base 4, octal, and hexadecimal number systems.
To specify one of these systems, follow the quoted digit string in the
base 4, octal or hexadecimal number base with B2, B3 or B4,
respectively.

6-2

DATA TYPES (B-D)

For example, the string '12322'B2 is the same bit string as
'0110111010'B, '37402'B3 is the same as '011111100000010'B, and
'lABF2C'B4 is the same as '000110101011111100101100'B.

You may precede a bit string constant
This integer is called a "repetition
bit string constant is to be repeated
example, the bit string constant
'1011101110111011'B.

by a parenthesized integer.
factor" and specifies that the
that number of times. For

(4)'1011'B is the same as

As in the case of CHARACTER strings, you must make two Choices when
declaring BIT string variables:

1. The number of bits (length) of the BIT string variable, and

2. Whether the length will be VARYING or NONVARYING.

If the BIT string is NONVARYING (the default), then
contain the number of bits specified by the length.
then it will contain at most the number of bits
length.

6.S "POINTER" DATA TYPE (D)

it will always
If it is VARYING,

specified in the

This is a "non-computational" data type. It is described in the
chapter entitled "BASED storage and POINTERs."

6-3

CHAPTER 7

THE ASSIGNMENT STATEMENT AND CPL EXPRESSIONS (B-C)

7.1 THE ASSIGNMENT STATEMENT (DIRECT OR COLLECT) (B)

variable = expression ; Format:
or variable,variable [,variable •••] = expression

This statement causes the expression on the right-hand side of the
equal sign to be evaluated, and the result assigned to the variable or
list of variables appearing on the left-hand side of the equal sign.

7.2 CPL EXPRESSIONS (B)

Expressions are combinations of constants, variables and operators
which specify that CPL is to make certain computations. For example,
the assignment statement:

A=B+C-5 ;

causes CPL to subtract the constant 5 from the sum of the variables B
and C, and store the result into the variable A.

7.3 DATA CONVERSIONS (C)

When an expression is being evaluated, it may be that an operation
cannot be performed Slnce the quantities being operated upon are the
wrong data type. For example, the expression A+B cannot be directly
computed if the variables A and B happen to be CHARACTER strings.

Whenever such an event occurs then CPL automatically converts the
operands to the correct data types. These conversions are additional
operations that take place automatically before the desired operation
can take place.

For example, if A+B is to be computed, where A and B are CHARACTER
string variables, then each of the CHARACTER strings must be converted
to FIXED before the addition can take place.

These conversions take place according to specific rules and with
specific restrictions, as described in a later chapter, entitled
"Conversions among Computational Data Types."

7-1

THE ASSIGNMENT STATEMENT AND CPL EXPRESSIONS (S-C)

7.4 CPL EXPRESSION OPERATORS (S-C)

This sections lists all the CPL operators. It tells what each
operator does, what data types are required by each operator, and how
conversions are made, if necessary.

7.4.1 +, - And * (Addition, Subtraction And Multiplication) (8)

Each of these operators takes two operands -- two numbers to be added,
subtracted or multiplied. Either both operands must be FIXED, in
which case the result of the operation is FIXED, or both operands must
be FLOAT, in which case the result of the operation is FLOAT.

If you specify operands which are not both FIXED or both FLOAT, then
CPL must convert one or both operands. The rules are as follows: If
either one of the operands is FLOAT, then CPL will convert the other
to FLOAT; otherwise, CPL will convert both operands to FIXED, unless
they are already FIXED.

7.4.2 / (Division) (B)

This operation follows the same rules
multiplication, with the following
operands must be FLOAT (so that the
converted to FLOAT).

as addition, subtraction and
exception: At least one of the
other operand will also be

It is illegal in CPL to divide one FIXED value by aonther. If you
wish to divide two FIXED values, then you can do one of the fOllowing:

1. You may force conversion of the numerator (or denominator) to
FLOAT, so that CPL will perform floating point division.
(For example, instead of specifying I/J, you specify
(OEO+I)/J.) You may th~n assign the floating point result to
a FIXED variable to provide truncation.

2. You may use the DIVI or DIVF built-in functions. DIVI(I,J)
will return a truncated FIXED quotient, while DIVF(I,J) will
return the FLOAT quotient.

WARNING: The functions DIVI and DIVF are not in the ANSI
PL/I standard, and so will not be available in other PL/I
implementations.

NOTE: Full PL/I, as specified by the ANS~ PL/I standard, permits
FIXED division, but specifies it in such a way that it cannot be
implemented correctly in any system which does not support scaled
FIXED data types. Since CPL could not support FIXED division
correctly, we decided not to permit it at all. The DIVI and DIVF
functions represent a kind of compromise. It is also worth noting
that FIXED division in full PL/I is very error-prone in use, and can
lead to unexpected errors. The most famous example is that the simple
statement, "A=2S + 1/3;" will, according to the standard, cause your
program to abort with a FIXEDOVERFLOW error interrupt.

7-2

THE ASSIGNMENT STATEMENT AND CPL EXPRESSIONS (B-C)

7.4.3 ** (Exponentiation) (B)

This operator takes two operands. The first operand is raised to the
power of the second operand. The result is always FLOAT.

For example, 2**3 returns the value 8, while X**.l returns the 10'th
root of X.

7.4.4 Comparison Operators (B)

There are eight comparison operators, as follows:
Operator Meaning

< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
~< No less than (same as >=)
~> Not greater than (same as <=)

Equal to
Not equal to

Each of these comparison operators takes two operands. The operands
may be of any computational data type, but they must both be of the
same data type. (Conversion rules are described below, in case data
types are different.)

The operands are compared according to the specified comparison
operator, and a BIT(l) value is returned. If the comparison yields
"true," then the value 'liB is returned. If the comparison yields
"false," then the value 'O'B is returned.

7.4.4.1 Conversions For Comparisons (C) - The comparison operators
require that both operands be of the same data type. If they are not
of the same data type, then the one of the "lower" data type is
converted to the "higher" data type. The computational data types, in
order from "highest" to "lowest," are as follows:

1. FLOAT

2. FIXED

3. CHARACTER

4. BIT

For example, if the two operands are FLOAT and CHARACTER, then CPL
converts the CHARACTER operand to FLOAT.

7-3

THE ASSIGNMENT STATEMENT AND CPL EXPRESSIONS (8-C)

7.4.4.2 Character String Comparisons (C) - When CPL compares two
character strings it compares them on a character-by-character basis
as follows: First, if the strings are of unequal length, then CPL
pads the shorter one with blanks on the end until it is as long as the
longer one. Then CPL takes characters from the first string and
compares them, one by one, with corresponding characters from the
second string, until two corresponding characters are found to be
unequal. CPL compares these two characters according to the standard
ASCTI collating sequence. The string which contains the greater
character, according to this collating sequence, is the greater
character string.

If CPL finds no unequal corresponding characters, then the two
character strings are equal.

EXAMPLES:

1. 'XYZ' is equal to the character string 'XYZ

2. 'ABCDZZZZZZZZ' is smaller than 'ABCEAAAA'.

7.4.4.3 BIT String Comparisons (C) - The method of comparison is
similar to that for CHARACTER strings. CPL pads the shorter string by
adding O's to the end of it, until it is as long as the longer string.
Then CPL compares the strings on a bit-by-bit basis, until two unequal
corresponding bits are found. When these bits are found, then the BIT
string containing the O-bit is considered smaller than the BIT string
containing the I-bit.

7.4.4.4 POINTER Comparisons (D) - These are described in detail in
the chapter on BASED storage and POINTERs. POINTERs can be tested
only for equality or inequality (= or ~=).

7.4.5 + And - (Prefix Plus And Minus) (B)

These two operators take a single operand. the prefix minus operator
negates a FIXED or FLOAT operand. The prefix plus operator has no
effect on a FIXED or FLOAT operand.

If the operand of the prefix plus or minus operator is CHARACTER or
BIT, then it is converted to FIXED.

7.4.6 & And ! (Logical And and Or) (B)

These two operators require BIT operands. The shorter of the two
operands is padded with zeros to the length of the other operand. The
resulting BIT string is the same length as the operands, and is formed
by taking the logical And or Or of corresponding bits.

EXAMPLE: '1101'B&'0110111'B yields the result '1000000'B, while
'1101'B! '0110111'B yields '1111111'B.

7-4

THE ASSIGNMENT STATEMENT AND CPL EXPRESSIONS (B-C)

7.4.7 " (Logical Not Operator) (B)

This operator takes a single BIT string operand. The resulting BIT
string is the same length as the operand, with each O-bit changed to a
I-bit and each I-bit changed to a O-bit.

7 • 4 • 8 !! (S t r in g Con cat e nat ion Op era tor) (C)

This operator requires two operands, both of which must be either
CHARACTER strings or BIT strings. The two strings are combined to
form one long string consisting of all characters or bits of both
strings. .

If both operands are BIT strings, then BIT string concatenation takes
place; otherwise, both operands are converted to CHARACTER, if
necessary, and CHARACTER string concatenation takes place.

EXAMPLE: 'ABC'!! '12345XYZ' yields the result 'ABC12345XYZ'.

7.5 PRECEDENCE OF OPERATORS (B)

You may use parentheses to specify any operator order that you desire.
For example, in the expression A*(B+C), CPL will perform the addition
before the multiplication.

However, whenever you do not use parentheses to specify an operator
priority, then CPL evaluates the operators according to a priority
algorithm. The operators are arranged in the following priority
groups, from highest to lowest:

1. **, prefix +, prefix -

2. * /
3. Infix +, infix -

4. ! !

5. All comparison operators «, >, >=, <=, "'>, "<, =, "=)

6. &

7.

Unless you override the priorities with parentheses, operators of
higher priority are performed before operators of a lower priority.
Within each group, operators have equal priority. Operations from the
same group are performed in the sequence in which they appear in a
PL/I statement that is, from left to right except that
operations in Group 1 are performed from right to left.

EXAMPLE: The numbers show the order in which the operations are
performed in the following expression:

A< -B+(C/(D*E/F»**G ! H"=I & J>K
7 5 6 3 1 2 4 11 8 10 9

7-5

THE ASSIGNMENT STATEMENT AND CPL EXPRESSIONS (B-C)

In general, an operation can be performed only after its operands have
been evaluated.

When in doubt, parenthesize!

7-6

CHAPTER 8

LABELS AND "GO TO" AND "IF" STATEMENTS (B)

As a general rule, when CPL finishes executing one statement in a
program, it moves to the next statement. Some statements, however,
modify this normal flow. The GO TO and IF statements are such
statements, as is the DO statement discussed in the next chapter.

8.1 STATEMENT LABELS (COLLECT ONLY) (B)

Format: ident: statement;

The identifier "ident" is a statement label for the "statement". Any
statement except DECLARE and DEFAULT may be labeled. The PROCEDURE
statement must be labeled.

A statement may have more than one statement label. For example, in
the line:

120. LABl: LAB2: STOP; XYZ: 1=5;

the S~OP statement has two statement labels, LABl and LAB2, and the
assignment statement has one label, XYZ.

A PROCEDURE statement may have only one label.

8.2 THE GO TO STATEMENT (COLLECT ONLY) (B)

Format:
or

GO TO label;
GOTO label;

Here "label" is a statement label which appears elsewhere in the same
program.

When the GO TO statement is executed, it causes control to pass to the
statement with the specified statement label.

8.3 THE IF STATEMENT (COLLECT ONLY) (B)

Basic format: IF expr THEN stmtl; ELSE stmt2;

8-1

LABELS AND "GO TO" AND "IF" STATEMENTS (B)

CPL evaluates the logical expression "expr." If the result is true,
then CPL executes "stmtl"; if the result is false, then "stmt2" is
executed.

In the IF statement, you will probably be using the comparison and
logical operators. Typical logical expressions are "A>B" and
"A>2&B=3". These express relationships among variables whose values
have already been computed, and return what may be called a "truth
value." (A truth value is really a BIT(l) value. BIT(l) values will
be discussed below.)

For example, the statement

IF A>B THEN GO TO XYZ; ELSE GO TO UVW;

causes CPL to compare the values of A and B. If A is larger, then
control transfers to the statement labeled XYZ; if A is less than or
equal to B, then control transfers to the statement labeled UVW.

Any statement may be used in the THEN or ELSE clauses.
suppose you wish to add to I the maximum of J and K.
with the statement

I=I+MAX(J,K} ;

but you can also do it with the statement

IF J>K THEN I=I+J; ELSE I=I+K;

For example,
You can do it

Note that no matter which of the alternatives is taken, execution will
continue with the statement following the ELSE clause in the program.
(This is usually the statement on the next line.)

8.3.1 Omitting The ELSE Clause (B)

If desired, you may omit the ELSE clause from your IF statement. For
example, suppose your program executes

IF A>B & C=2 THEN GO TO LAB1;

If A is greater than Band C
statement LAB1; otherwise,
following the IF statement.

equals 2
control

8.3.2 Separating The ELSE Clause (B)

then
will

control
pass to

will
the

pass to
statement

The ELSE clause need not appear on the same line as the IF statement.

8.3.3 Nested IF Statements (B)

The THEN or ELSE clause of an IF statement may itself be another IF
statement. An example is the following group of statements:

8-2

LABELS AND "GO TO" AND "IF" STATEMENTS (B)

IF A)B THEN IF C=5 THEN GO TO XYZ;
ELSE GO TO ABC;

ELSE IF A=B THEN IF C=5 THEN GO TO UVW;
ELSE GO TO MNO;

When matching up ELSE clauses to IF statements, CPL will match up an
ELSE clause with the last unmatched IF statement.

8.3.4 DO/END Groups As THEN/ELSE Clauses (B)

If you wish the THEN or ELSE clause of an IF statement to consist of
several statements, you may use a DO/END group. DO statements will be
discussed in detail in a later chapter; here we will illustrate a
simple example of their usage.

The general format is:

IF expr THEN DO;
ELSE DOi ••• ;

... , END;
END;

The two occurrences of " ••• " in the above format stand for any group
of statements. The first group will be executed if the "expr" is
true, and the second group will be executed if the "expr" is false.

Of course, all of the above statements can be split up onto separate
lines.

8.3.5 BIT Values In The IF Expression (D)

Recall that the format of the IF statement is "IF expr THEN stmtli
ELSE stmt2;". "Expr" is a logical expression which is, in all the
examples, an expression with a BIT(l) value -- that is, an expression
with a value of 'orB (for "false") or 'liB (for "true").

Any BIT expression can be used as the first argument to the IF
statement. If the BIT string contains any I-bit, then the THEN clause
will be taken. But if the BIT string is the null BIT string, or if it
contains only O-bits, then the ELSE clause, if any, will be taken.

8-3

CHAPTER 9

THE DO AND END STATEMENTS (B-D)

The DO and END statements enclose and identify a group of statements
which you wish to think of as a single unit. The DO and END
statements also provide a means for you to specify that this group of
statements is to be executed more than once (iteratively).

Terminology: The term "DO-group" will refer, throughout this manual,
to a DO statement and its corresponding END statement and to the
statements they enclose.

9.1 THE NON-ITERATIVE DO-GROUP (COLLECT ONLY) (B)

Format: DO; END;

This form of the DO statement is generally useful only to specify a
group of statements to be used as a THEN clause or ELSE clause of an
IF statement. This usage has been discussed in the description of the
IF statement.

This simple form of the DO statement specifies that the group of
statements is to be executed once.

9.2 THE WHILE-ONLY DO GROUP (COLLECT ONLY) (B)

Format: DO WHILE(exp); ... , END;

The expression
the expression
The expression
of statements
immediately to

is a "logical expression" with the same properties as
which serves as the first argument to the IF statement.
is evaluated. If its value is "false," then the group
is not executed at all; instead, control transfers

the statement following the END statement.

If the value of the expression is "true," then the group of statements
is executed. After the group has executed, the expression in the DO
statement is re-computed. If it is now "false," then control
transfers to the statement following the END statement. But if it is
still "true," then the group of statements is executed again. The
group of statements is executed over and over until evaluation of the
expression in the WHILE clause yields a value of "false."

EXAMPLE: Suppose file DSK:F.DT contains input values, and we wish to
find the first input value which is greater than 100. We can use the
following statements:

9-1

THE DO AND END STATEMENTS (B-D)

10. DECLARE F FILE;
20. 1=0;
30. DO WHILE (1<=100);
40. GET FILE(F) LIST(I);
50. END;

Here there is only a single GET statement in the DO-group. This
statement will be executed over and over until it yields a value of I
which exceeds 100. (The GET statement is described in another
chapter. To understand this example you need only know that statement
40 above will read a single value from file F and place its value into
the variable I.)

9.3 THE DO-GROUP WITH DO VARIABLE (COLLECT ONLY) (B-C)

Format: DO vble = spec [,spec ...]
... , END;

The "vble" is a scalar variable, or a subscripted array element, which
is to take on specified values as the statements in the DO-group are
repetitively executed. The variable is called the "DO-group variable"
or "DO-loop variable."

The "spec" is a specification which defines what values the DO-group
variable is to be assigned, and how many times the DO-group of
statements is to be executed.

Before proceeding to the general definition of this specification, let
us consider the following:

EXAMPLE: The following program will print out a table of the square
roots of all numbers from 1 to 50.

10. DECLARE A FLOAT;
20. DO I = 1 TO 50;
30. A = SQRT(I);
40. PUT SKIP LIST(I,A);
50. END;

Statement 20. of the above program requests the following: Execute
all statements in the DO group 50 times. During the first iteration,
I will have the value 1. For each subsequent iteration, the value of
I will be incremented by one, so that the DO-group will be executed
with I having the values 2, 3, 4, and so forth. On the last
iteration, I will equal 50. It will then be incremented once more -
to 51. As soon as the program finds this value greater than the TO
value (50), it will end execution of the DO group and will pass
control to the statement after END.

The portion "1 TO 50" of statement 20 is a "spec," which provides the
following information:

1. The values which the DO-group variable will assume: 1, 2, 3,
... , 50, and, by implication, the number of times that the
DO-group will be executed.

2. A condition for determining whether the DO-group should be
executed one more time. In this case, the test is whether
the value of I has exceeded 50.

9-2

THE DO AND END STATEMENTS (B-D)

Sometimes, the "spec" will specify the first of the above, but not the
second. In that case, the DO-group will never terminate except by
"abnormal" means. (Abnormal DO-group terminations are discussed in a
later section, IINormal and Abnormal Termination of DO Groups.lI)

9.3.1 The Format Of The "spec ll (B)

The format of a "spec" is the following:

initial-expression [iteration-part] [WHILE (exp)]

where the optional "iteration-part" has one of the following formats:

1. BY expression

The DO-group variable assumes the "initial-expression" value
for the first iteration of the group. For each subsequent
iteration, the value of the variable is incremented by the
value of the "by-expression" (as the expression following the
BY keyword is called). If the value of the by-expression is
negative, then the DO-variable will be decremented rather
than incremented.

This form of the "spec" provides no means for normal
termination (unless a WHILE clause is present -- this will be
discussed later).

2. BY expression TO expression

For the first iteration of the DO-group, the variable will
assume the value of the "initial-expression." For subsequent
iterations, the value of the DO-group variable will be
incremented by the value of the by-expression (or
decremented, if the by-expression is negative).

This form of the "spec" provides a test for termination of
the DO-group. The DO-group will be executed only as long as
the DO-variable does not exceed the value of the
to-expr"ess ion.

Exception: If the value of the by-expression is negative,
then the statements in ~he DO-group will be executed only as
long as the DO-variable is larger than or equal to the value
of the to-expression. the to-expression.

3. TO expression BY expression

This case has the same effect as the preceding case.

4. TO expression

This case is equivalent to "BY 1 TO expression ll
•

5. REPEAT(expression)

The REPEAT option allows you to vary the value of the
DO-variable according to a specific formula. This is very
useful when you wish the sequence of DO-variable values to be
other than an arithmetic series.

9-3

EXAMPLES.

1.

THE DO AND END STATEMENTS (B-D)

This form of the iteration specification is quite different
from that of the others. For the first iteration of the
DO-group, the DO-variable will assume the value of the
"initial expression." After each iteration of the DO-group,
CPL recomputes the value of the repeat-expression (as the
"expression" following the REPEAT keyword is called), and
assigns that value as the new value of the DO-variable. This
form of the "spec" provides no test for termination (unless a
WHILE clause is also specified, as described below).

DO I = 2 BY 3; ... , END;

The DO-variable I will assume the values 2, 5, 8, 11,
The iterations will never terminate normally.

2. DO I = 2 BY 3 TO 18; ... , END;

I will assume the values 2, 5, 8, 11, 14, and 17. Then I
will be set to 20, which exceeds the value, 18, of the
to-expression, so that control will pass to the statement
following the END statement.

3. DO I = 2 TO 5; ... , END;

The statement group will be executed 4 times, with I having
the values 2, 3, 4 and 5.

4. DO I = 5 TO 2 BY -1; ••• I END;

The statement group will be executed 4 times, with I assuming
the values 5, 4, 3 and 2.

5. DECLARE A FLOAT;
DO A = 2.3 TO 6.3 BY 1.34; ... , END;

The FLOAT DO-variable will assume the values 2.3, 3.64, and
4.98.

6. DO I = 1 REPEAT(2*I); ... , END;

The variable I will assume the values 1, 2, 4, 8, 16, 32,
The DO-group will not terminate normally.

9.3.2 Completely Unsatisfied Specifications (B)

Consider the following program segment:

J = 0;
DO I = 1 TO J;
..• ; END;

Since the value of J is 0, the second statement is equivalent to "DO
1=1 to 0". In this event, the initial value, 1, is assigned to the
DO-variable I, and then, since I exceeds the value, 0, of the
to-expression, control passes immediately to the statement following

9-4

THE DO AND END STATEMENTS (B-D)

the END statement. The statements in the group are not executed even
once.

9.3.3 The Effect Of The WHILE Clause (B)

You use the WHILE clause with an iteration specification in much the
same way you used it in the WHILE-only DO statement described before.

As stated above, the "iteration specification" mayor may not specify
a test for ending the iterations. The WHILE clause, if specified,
provides such a test.

If the iteration specification provides a test, then the iterations
will stop if either of the tests indicates stopping.

Here are some examples:

1. J=O;
DO I = 1 TO 10 WHILE(J < 17);
J = J + I;
END;

The group will be executed with I equal to 1, 2, 3, 4, 5 and
6. Then I will be assigned the value 7, but J will have the
value 21 (=1+2+3+4+5+6), and so control will pass to the
statement following the END statement. (The reader should
work through this short program and verify for himself that J
will end up with the value 21.)

2. DO I 1 REPEAT(2*I) WHILE(I<=32); ... ; END;

I will be assigned the values 1, 2, 4, 8, 16, and 32. When I
is assigned the value 64, the test in the WHILE clause will
fail, and the loop will be terminated.

3. DO I = 23 WHILE(A=B); ••• I END;

I is assigned the value 23. If A=B, then the statement group
will be executed once and only once. If A and B are unequal,
then control will pass immediately to the statement following
the END statement.

9.3.4 Multiple Specifications (B)

The format for this type of DO statement allows more than one
specification to be given.

If you enter more than one specification, then CPL will complete each
specification in turn, and then move on to the next one. When the
last specification is completed, then control will pass to the
statement following the END statement.

9-5

THE DO AND END STATEMENTS (B-D)

Here are some examples:

1. DO I = 2,3,15,25,-3,66: ... , END:

The DO-variable I will assume the values shown in the order
shown. This is a particularly convenient form of the DO
statement when there is no simple formula for the sequence of
values which you wish the DO-variable to assume.

2. DO I = 1 TO 5, 3 TO 8 BY 2, 32 REPEAT(.5*I) WHILE(I>=l) ;
.•• , END

The statement
assuming the
and 1.

group will be executed 14 times, with I
values 1, 2, 3, 4, 5, 3, 5, 7, 32, 16, 8, 4, 2

9.3.5 DO-variable With Non-arithmetic Data Type (C)

It is legal for the DO-variable to have any of the data types FIXED,
FLOAT, CHARACTER, BIT or POINTER.

However, there is a restriction if the data type is not FIXED or
FLOAT. In this case, the TO clause and the BY clause are illegal.
The REPEAT and WHILE clauses are legal.

EXAMPLE:

DECLARE C CHAR(30) VARYING;
DO C='123' REPEAT(C!! 'ABC'} WHILE (LENGTH(C}<lO) ;
••. : END:

Here the DO-variable is the CHARACTER variable C. C will assume the
values '123', '123ABC', and '123ABCABC'. Then C will be assigned the
value '123ABCABCABC', but since the WHILE clause will not be satisfied
(since the LENGTH (C) is 12), control will then pass to the statement
following the END statement.

9.4 EXPRESSION EVALUATION IN DO-STATEMENT CLAUSES (D)

It may be of interest to some programmers to understand how and when
the various expressions in the DO statement are evaluated. The
following rules apply:

1. Each "spec" is fully terminated before any expression in a
following "spec" is evaluated. The following rules discuss
order of expression evaluation within a single "spec".

2. First, the "initial expression" is evaluated, and the value
assigned to the DO-variable.

3. If the spec contains a to-expression or a by-expression, then
that (those) expression(s) is (are) evaluated, and the values
saved. They are not again evaluated for as long as that DO
group is active.

4. If the spec contains a REPEAT clause, then that expression is
evaluated each time the value of the DO-group variable is
reassigned.

9-6

THE DO AND END STATEMENTS (B-D)

5. If the spec contains a WHILE clause, then that expression is
evaluated each time that the DO-variable is assigned or
reassigned, whether by means of the initial expression, by
means of the by-expression, or by means of the REPEAT option.

Here is an example:

J = 10;
DO I = 1 TO J;

J = 5 ; ... , END;

When the _DO statement is first executed, the value of J is 10. This
value is computed and saved, so the fact that the value of J changes
inside the DO group will have no effect on the number of iterations.

9.5 NORMAL AND ABNORMAL TERMINATION OF DO GROUPS (C)

An active DO group can terminate in two ways:

1. The specifications in the clauses of the DO statement can be
satisified. For example, in the DO statement "DO 1=1 TO 10"
the DO group will terminate when the value of I reaches 11.

2. The execution of a GO TO statement can transfer control out
of the DO group.

The first of these terminations is called "normal," and the second
"abnormal."

9.6 THE END STATEMENT (COLLECT ONLY) (B)

Format: END [identifier];

This statement is used to terminate DO groups in the manner described
in this chapter; It is also used to terminate BEGIN blocks, PROCEDURE
blocks and ON-units, in a similar manner, as will be described in
later chapters.

9.6.1 Multiple Closure Of DO Groups (C)

The Format of the END statement given just above shows that an
identifier may follow the END keyword. This format may be used when
you wish to use one END to terminate several DO groups.

Consider the following program statements:

A: DO I
DO J

END A;

1 TO 10;
1 TO 10;

9-7

THE DO AND END STATEMENTS (B-D)

The END statement specifies an identifier A. CPL will search all
preceding unmatched DO statements for one with the label A. CPL will
terminate not only that DO group, but also all unmatched DO groups
following that one. CPL does this by inserting dummy END statements
in your program.

The same method can be used to close multiple BEGIN and PROCEDURE
statements, but it is not recommended that you do this.

9.6.2 GOTO To Multiple Closure END Statement (D)

If a multiple closure END statement has a statement label, then all
dummy END statements are inserted before the statement label. This
means that if a GOTO statement in one of the inner DO groups transfers
control to the multiple closure END statement, then CPL terminates the
inner DO groups abnormally, and transfers to the END statement for the
outer DO group.

EXAMPLE: Consider the program segment

A: DO I = 1 TO 10;
DO J = 1 TO 10;

GO TO OOEND;

DOEND: END Ai

When CPL executes the GOTO statement, it terminates the inner DO group
abnormally, transfers to the END statement of the outer group.

9-8

CHAPTER 10

ARRAYS (DIMENSIONED VARIABLES) (B)

Normally a CPL identifier stands for only a single data value a
single FIXED or FLOAT number, or a single CHARACTER or BIT string.

However, you may also use an identifier to stand for more than one
data value. You would need this capability if, for example, you
wished to use a variable to represent a mathematical vector or matrix.

10.1 ONE-DIMENSIONAL ARRAYS (VECTORS) (B)

Suppose your program contains the following declaration:

DECLARE A(lO} FLOAT;

This declaration specifies that the identifier array is to stand for
10 FLOAT data values, rather than the usual 1.

You refer to these 10 values individually by means of a "subscript." A
subscript is a number or expression enclosed in parentheses following
the dimensioned identifier. In the case of the the identifier A
described above, you can refer to the 10 elements of the array A with
A(l}, A(2}, A(3}, ... , A(9}, A(lO}. For example, the statement A(2}=5
sets the second array element to 5, and the statement PUT LIST(A(3}}
types out the third element of the array.

Any expression may be used as a subscript. For example, if I has the
value 5, then the statement A(I+2}=-10 will set A(7} to the value -10.

EXAMPLE: The sequence 1, 1, 2, 3,
sequence of Fibonacci numbers.
the sum of the preceding two.

5, 8, 13, is called the
After the first two, each number is

Here is a program, using arrays, which prints out the first 50
Fibonacci numbers:

10. DECLARE FIB(50} FIXED;
20. FIB(l}=l; FIB(2}=1;
30. PUT LIST(FIB(l} ,FIB(2}};
40. DO I = 3 TO 50;
50. FIB(I) = FIB(I-l} + FIB(I-2};
60. PUT LIST(FIB(I));
70. END

10-1

ARRAYS (DIMENSIONED VARIABLES) (B)

At the completion of the above program, the array FIB will have been
assigned the values of the first 50 Fibonacci numbers.

10.2 LOWER BOUNDS OTHER THAN 1 (B)

In the declaration

DECLARE A(lO) FIXED;

the subscript values extend from 1 to 10. That is, the lower bound of
the subscript values is 1, and the upper bound is 10.

The upper bound value 10 was specified in the declaration. There is
also a way to specify the lower bound,·if you do not wish it to be 1.

For example, in the declaration,

DECLARE B(-3:l2) FIXED;

the subscripts may range from -3 to +12; that is, the lower bound is
-3 and the upper bound is 12.

10.3 OTHER DATA TYPES FOR ARRAYS (B)

Any computational data type may be used for an array.
the declaration

DECLARE ST(lO) CHAR(23) VAR;

For example,

defines the identifier ST to stand for 10 strings of the type CHAR(23)
VARYING.

Any of the data types FIXED, FLOAT, CHAR [VARYING] and BIT [VARYING]
may be used.

10.4 TWO-DIMENSIONAL ARRAYS (MATRICES) (B)

Consider the declaration,

DECLARE CC(4,5) FIXED;

This declaration specifies that CC is a two-dimensional array. There
are 20 (=4x5) elements in the array. You refer to the individual
array elements by using two subscript values in parentheses: CC(l,l),
CC (1 , 2), CC (1 , 3), CC (1 , 4), CC (1 , 5), CC (2 , 1) , CC (2 , 5), CC (3 ,1) ,

CC (5,5).

EXAMPLE: Suppose A is a 3x5 matrix, B is a 5x6 matrix, and C is a 3x6
matrix. Suppose you wish to set the matrix C to the matrix product of
A and B. Here is a program segment which will do that:

10-2

ARRAYS (DIMENSIONED VARIABLES) (B)

10. DECLARE A (3,5), B (5,6), C (3,6) ;
20. DO I = 1 TO 3;
30 • DO J = 1 TO 6;
40. C(I,J)=O /* INITIALIZE C(I,J) */;
50. DO K = 1 TO 5;
60. C(I,J)=C(I,J)+A(I,K)*B(K,J) /*ADD NEXT TERM*/;
70. END;
80. END;
90. END;

10.5 ARRAYS OF MORE THAN TWO DIMENSIONS (B)

'I'he declaration

DECLARE 0(3,4,8,3:5) FIXED;

specifies a four-dimensional array. The subscripts in the first
position run from 1 to 3, in the second position from 1 to 4, in the
third position from 1 to 8, and in the fourth position from 3 to 5.

Only in exceptional situations would you use more than 4 dimensions.
However, if needed, CPL allows up to 256 dimensions.

10-3

CHAPTER 11

GET LIST AND PUT LIST TO TERMINAL (B-C)

11.1 THE PUT STATEMENT (COLLECT OR DIRECT) (B)

FORMAT: PUT [SKIP] LIST(expl,exp2, ... };

You may put one or more expressions in the list of expressions. CPL
computes each expression, and prints its value on the terminal.

If you specify the SKIP option, then CPL prints a carriage return and
line feed before printing the values of the expressions.

EXAMPLE; For PUT LIST('THE ANSWER IS',2+2};
ANSWER IS 4" on the terminal.

11.2 THE? STATEMENT (COLLECT OR DIRECT) (B)

FORMAT: ?expl,exp2, •.• ;

CPL will type "THE

This statement is a short form of the PUT LIST statement.

11.3 THE GET STATEMENT (COLLECT OR DIRECT) (B)

FORMAT: GET LiST(vblel,vble2, ••.);

When CPL executes this statement, it stops computing and waitings for
you to type in values for the specified variables.

When you type in values, use the same format as that of a constant.
You may precede a FIXED or FLOAT numeric constant by an optional + or
- sign, with no intervening blanks.

You may terminate the constant by one or more blanks, a comma, a comma
with one or more blanks, or a carriage return - line feed.

11.3.1 Data Type Conversions (C)

The constant which is entered in response to a GET LIST statement
should have the same data type as that of the variable to which the
constant is to be assigned. If the constant has a different data type
then a conversion will be attempted. For example, a FIXED constant
will be converted to a FLOAT constant, and vice-versa.

11-1

GET LIST AND PUT LIST TO TERMINAL (B-C)

The full rules for data type conversions among strings in these
circumstances are described in a later section.

11.3.2 Omitted Data Values (C)

When CPL stops computing to wait for you to enter a value in resp?nse
to a GET LIST statement, you may just type in a comma or a carrlage
return-line feed for any variable in the GET LIST statement. This
will indicate to CPL that you wish to leave the current value of that
variable unchanged.

11.4 VARIABLE FORMAT FOR PUT LIST (C)

In the default case, a CPL PUT LIST statement produces output for
FIXED and FLOAT expressions in a variable format. That is, the format
of the output depends upon the value of the quantity being typed out.

This variable format does not comply with the ANSI PL/I standard.

If you would like your program output to be fully ANSI standard, then
you should add the following statement to the beginning of your
program:

1. DECLARE SYSPRINT PRINT;

This statement will cause CPL to override the variable format option
and use the ANSI standard option.

11-2

CHAPTER 12

GET AND PUT WITH STRING OPTION (C)

12.1 PUT WITH "STRING" OPTION (C)

Format:
or

PUT STRING{vble) LIST{exp-list);
PUT STRING{vble) EDIT{exp-list) (format);

where "vble" is an unsubscripted identifier which is scalar (i.e., not
an array) and of CHARACTER or CHARACTER VARYING data type.

CPL computes and converts the expressions in the same manner as for
the PUT statement to the terminal. Then it places the output into the
specified CHARACTER string variabe instead of to the terminal.

12.2 GET WITH "STRING" OPTION (C)

Format: GET STRING{expr) LIST{vble-list);

The expression "expr" is computed and converted to CHARACTER if
necessary. Input is taken from the character string rather than from
the terminal.

A frequent error in GET LIST with the STRING option is to forget to
leave a blank or a comma in the source character string after the last
data item in the string. For example, if CPL executes the statement

GET STRING{'2 23 32') LIST{I,J,K);

then CPL will stop execution with an error message indicating that the
terminating blank or comma for the data item "32" was not found.

12-1

CHAPTER 13

THE PUT EDIT STATEMENT (C-D)

13.1 INTRODUCTION (C)

The PUT LIST statement, already discussed, gives you very little
control over the format of output. The output format follows rules
set up by CPL.

PUT EDIT lets you control the format. You can control exactly where
on the line the output will appear. You can also control the position
of the decimal point and whether an "E" type exponent will appear.

If you do not need formatted output, then you may skip this chapter.

13.1.1 Basic Format (C)

The simplest format is:

Format: PUT EDIT(output-list) (format-list)

The "output-list" is a list of expressions. The format is the same as
the list of expressions in PUT LIST.

The "format-list" is a list of format items, separated by commas,
which specifies how the data is to be printed.

13.1.2 Example (C)

Consider the statement

PUT EDIT(23,45) (F(5),E(12,3))

There are two expressions (23 and 45) and two format items (F(5) and
E(12,3)). 23 is printed in the format F(5) and 45 is printed in the
formatE(12,3).

F(5) format specifies that the number is to be printed as an integer
in a field 5 characters wide. Therefore, the characters bbb23 will be
printed, where "b" stands for a blank.

E(12,3) format specifies the E-type format. There will be 3 digits
following the decimal point. The total field width is 12 characters.
Thus, the output would be bbb4.500E+Ol.

13-1

THE PUT EDIT STATEMENT (C-D)

The total output from this statement will consist of the following 17
characters:

bbb23bbb4.500E+Ol

where. "b" stands for a blank.

13.2 THE MOST COMMON FORMAT ITEMS (C)

Here are the data format items that you will use most often:

1. F(w). Print the data as an integer right-justified in a
field w characters wide.

2. F(w,d). Print the data as a decimal number with d digits
following the decimal point, right-justified in a field w
characters wide.

3. E(w,d). Print the data as a floating point number in the
format

[-]9.99 ... 9ES99

where each of the 9's stands for a digit.
following the decimal point. "s" is
depending upon the sign of the exponent.
always contains two digits.

There are d digits
a sign, + or-,

The exponent field

4. A or A(w). Print the data as a character string. The width
of the field will be w, if w is specified. If w is not
specified, then the length of the data item will be used.
The data is converted to character, and is left-justified in
the output fie1d.

Another group of format items is called the collect of "control"
format items. These items do not specify data formats. They specify
where in the recor9 or on the page the data is to appear. Here are
the most commonly used control format items:

1. X(w). Print w blanks.

2. SKIP[(n)]. If n is not specified, the
specfied number of carriage returns
printed.

3. PAGE. Skip to the top of a new page.

13.3 FURTHER PUT EDIT EXAMPLES (C)

1 is assumed. The
and line feeds are

Let us consider some variation of the preceding example.

1. PUT EDIT(23,45) (F(5) ,X(4) ,E(12,3)) ; will produce the output

bbb23bbbbbbb4.5E+Ol

There are four extra blanks, due to the X(4) control format
item.

13-2

THE PUT EDIT STATEMENT (C-D)

2. PUT EDIT(23,4S) (F(S) ,SKIP,E(12,3»: will produce the output

bbb23
bbb4.S00E+Ol

13.4 ITERATION FACTORS (C)

If your format list specifies the same format item several times, you
may be able to save some effort by using iteration factors. Iteration
factors allow you to specify that a format item or group of format
items is to be used by CPL more than once.

The simplest format is:

Format:
or

integer format-item
integer (format-list)

The "integer" specifies the number of times the format item or
format-list is to be repeated.

EXAMPLE: PUT EDIT(1,2,3) (2 F(4) ,F(5,2»; will produce the output

bbblbbb2b3.00

where "b" stands for blank.

Note that in the above PUT EDIT statement, there is a blank after the
iteration factor "2". This blank is required.

13.5 HOW PUT EDIT IS EXECUTED (C)

If you plan to use PUT EOIT extensively, then you should read the
following, which describes exactly how it is executed.

1. Initialize the "format pointer" to point to the beginning of
the format list.

2. Compute the first (or next) data item and save its value.

3. Starting from the position of the current "format pointer,"
choose the next format item and update the format pointer.
Take account of iteration factors in making the choice of the
next format item. Also take remote formats (described later
in this chapter) into account.

4. If the format item is a control format (like X or SKIP), then
perform the specified control operation, then go back to the
preceding step.

5. If the format item is a data format item, then print the data
value in the specified format, and go back to step 2.

13-3

THE PUT EDIT STATEMENT (C-D)

13.6 DETAILED SPECIFICATION OF THE FORMAT LIST (C)

This section supplants the previous informal descriptions with a
formal description of the format list.

A format-list consists of one or more specifications,
commas. Each of these specifications has one of
formats:

1. A format-item

2. iteration-factor format-item

3. iteration-factor (format-list)

separated by
the following

The iteration factor is in one of the following two formats:

1. integer

2. (expression

Note that the iteration factor may consist of a parenthesized
expression. This expression may contain any variables or function
calls. CPL will evaluate the expression and convert it to an integer,
if necessary. The value may be zero or positive.

The "format-item" is either a data format item, a control format item,
or a remote format item. These are described in the following
sections.

13.7 DATA FORMAT ITEMS (C)

Each data item from the data list of the PUT EDIT statement is printed
out in one of the formats specified by a data format item.

The data format item specifies both (1) the data type to which the
data item is to be converted, and (2) the form in which the data type
is to be printed.

13.7.1 The F Format Item (C)

Format: F(w [,d [,p]]

where w, d and p may be any CPL expressions. The values of the
expressions are computed and converted to integers. The value of w
must be positive, and the value of d may not be negative. If d is not
specified, then it defaults to O. If P is not specified then it
defaults to O.

The data item is converted to FLOAT.

The data item is printed right-justified in a field w characters wide.

13-4

THE PUT EDIT STATEMENT (C-D)

The printed data is the character representation of a decimal number,
possibly with a decimal point, rounded if necessary, and
right-adjusted in the specified field.

If d=O, then only the integer portion of the numcGr is written; no
decimal point appears.

If d>O, then d fractional digits are printed, with a decimal point
inserted before the fractional digits. Trailing zeroes qre supplied
if necessary to fill out d fractional digits. Suppression of leading
zeros is applied to all digit positions (except the first) to the left
of the decimal point.

If the value of the data item is less than zero, a minus sign is
prefixed to the external character representation; if it is greater
than or equal to zero, no sign appears. Therefore, for negative
values of the data value, the field width specifiecation (w) must
include a count of both the sign and decimal point.

The scaling factor, p, is usually useless. CPL multiplies the data
value by lO**p before printing out the value.

13.7.2 The E Format Item (C)

Format: E(w [,d [,s]])

where w, d and s may be any CPL expressions. The values of w, d and s
are computed and converted to integers. If d is not specified, it
defaults to 7. If s is not specified, it defaults to the v~lue of
(d+l) •

The argument w stands for the field width, and specifies the total
number of characters in the field. The argument d stands for the
number of fractional digits, and specifies the number of digits in the
mantissa that follow the decimal point. The argument s stands for the
number of significant digits and specifies the number of digits that
must appear in the mantissa.

The values of d and s must satisfy d>=O and s>=d. The minimum value
of w can be computed from a formula given later in this section.

The internal data is converted to FLOAT and is printed in the
following general form:

[-J (s-d) digits. d digits E [+!-] exponent

The value is rounded if necessary.

The exponent is a two-digit decimal integer constant, which may be two
zeros. The exponent is automatically adjusted so that the leading
digit of the mantissa is nonzero.

If the above form of the number does not fill the specified field, the
number is right-adjusted and extended on the left with blanks.

13-5

THE PUT EDIT STATEMENT (C-D)

Here is how to compute the minimum value of w:

1. Start with the quantity (s+4) .

2. If s=d, then add 1.

3. If d>O then add 1.

4. If the data value is negative, then add 1.

13.7.3 The A Format Item (C)

Format: A [(w)]

The argument w, if specified, is any CPL expression. It will be
computed and converted to an integer which must be non-negative.

The data value is converted, if necessary, to CHARACTER and is
truncated or extended with blanks on the right to the specified field
width (w) before being printed. If w=O, then no characters are
printed. Enclosing quotation marks are never printed. If the field
width is not specified, it is assumed to be equal to the
character-string length of the converted data element.

13.7.4 The B Format Item (C)

Format: B [(w)]

The argument w, if specified, is any CPL expression. It will be
computed and converted to an integer which must be non-negative.

The data value is converted, if necessary, to BIT. The BIT string is
then converted to a CHARACTER string of the same length. The
CHARACTER string is truncated or extended with blanks on the left to
the specified fi~ld width (w) before being printed. If the field
width is not specified, it is assumed to be equal to the number of
bits in the BIT string.

The resulting CHARACTER string is printed.
printed, nor is the identifying letter B.

13.7.5 The Bl Format Item (C)

Format: Bl [(w)]

This is identical to the B format item.

13-6

NO quotation marks are

THE PUT EDIT STATEMENT (C-D)

13.7.6 The B3 Format Item (C)

Format: B3 [(w)]

The argument w, if specified, is any CPL expression, It will be
computed and converted to an integer, which must be non-negative.

The data value is converted, if necessary, to BIT. If the number of
bits in the string is not precisely divisible by 3, then the BIT
string is extended from the left with 1 or 2 O-bits, so that the
length is divisible by 3.

The BIT string is converted to a CHARACTER string containing one octal
digit for each 3 bits in the bit string. The characters in the
CHARACTER string will be digits in the range 0 through 7. The length
of the CHARACTER str ing will be 1/3 -the length of the BIT str ing.

The CHARACTER string is then truncated or extended with blanks on the
left to the specified field with (w) before being printed. If the
field width is not specified, then it is assumed to be equal to the
number of characters in the CHARACTER string.

The resulting CHARACTER string is printed.
printed, nor is the identifying radix B3.

13.7.7 The B4 Format Item (C)

Format: B4 [(w)]

No quotation marks are

The argument w, if specified, is any CPL expression. It will be
computed and converted to an integer, which must be non-negative.

The data value is converted, if necessary, to BIT. If the number of
bits in the BIT string is not precisely divisible by 4, then the BIT
string is extended from the left with 1, 2 or 3 O-bits, so that the
length is divisible by 4.

The BIT string ifi converted to a CHARACTER string containing one
hexadecimal (base 16) digit for each 4 bits in the BIT string. The
characters in the CHARACTER string will be digits in the range 0-9 or
letters in the range A-F. The length of the CHARACTER string will be
1/4 the length of the BIT string.

The character string is then truncated or extended with blanks on the
left to the specified field width (w) before being printed. If the
field width is not specified, then it is assumed to be equal to the
number of characters in the CHARACTER string.

The reSUlting CHARACTER string is print.
printed, nor is the identifying radix B4.

13.7.8 The B2 Format Item (C)

Format: B2 [(w)]

13-7

No quotation marks are

THE PUT EDIT STATEMENT (C-D)

This is like the B3 and B4 format items, except that the bit string is
converted to the base 4 number system.

13.8 CONTROL FORMAT ITEMS (C)

There is no data output associated with a control format item. The
control format items specify the layout of the data.

A control format item has no effect unless it is encountered before
the data list is exhausted.

13.8.1 The X Format Item (C)

Format: X(w)

The argument w is any CPL expression. It will be computed and
converted to an integer, which must be non-negative.

CPL prints out w blank characters.

13.8.2 The COLUMN Format Item (C)

Abbrev: COL for COLUMN

Format: COLUMN(n)

The argument n is any CPL expression. It will
converted to an integer, which must be non-negative.
will be assumed.

be computed and
If n=O, then n=l

CPL prints sufficient spaces so that the following output will be
printed starting at the column number specified by n. (The column
number is the position of the character on the line. The first
character on the line is in column 1.)

If printing has already passed that column on the current line, then
CPL will simulate an implied SKIP option, and then move to the
specified column.

The current column number is computed to be 1 plus the number of
characters which have been printed for this FILE identifier since the
last carriage-return character was printed. Note that CPL does not
take into account any other special characters (such as tab or other
control characters) which may physically affect the position of the
printing element, other than to count each such character as one
character.

13-8

THE PUT EDIT STATEMENT (C-D)

13.8.3 The SKIP Format Item (C)

Format: SKIP [(n)]

The argument n, if specified, is any CPL expression. It will be
computed and converted to an integer, which must be non-negative. If
n is not specified, then n=l is assumed. If n is positive, then CPL
prints carriage return-line feed pairs. The value n=O is permitted
only for PRINT files; in this case, CPL prints a carriage return, so
that the output which follows will overprint the preceding line.

13.8.4 The PAGE Format Item (C)

Forma t: PAGE

You may use this format item only with PRINT files. CPL prints a form
feed and carriage return, so that subsequent output will be on a new
page.

13.9 THE REMOTE FORMAT ITEM (C)

Format: R(label}

The remote format item allows format items in a FORMAT statement
(described below) to replace the remote format item.

The "label" is the label of a FORMAT statement. The FORMAT statement
includes a format list that is taken to replace the format item.

The specified FORMAT statement must be internal to the same block as
the PUT EDIT statement.

13.10 THE FORMAT STATEMENT (COLLECT ONLY) (C)

Format: label: FORMAT (format-list) ;

A FORMAT statement must have a statement label.

The "format-list" is the same as is specified for the PUT EDIT
statement.

The format-list in the FORMAT statement can be referenced by means of
a remote format item appearing in a PUT EDIT statement format list.

The format-list in a FORMAT statement may contain a remote format item
referring to other FORMAT statements.

13-9

THE PUT EDIT STATEMENT (C-O)

13.11 OTHER OPTIONS OF THE PUT EDIT STATEMENT (C)

13.11.1 Multiple Lists (C)

There may be several data and format lists in a single FORMAT
statement. The format is:

Format: PUT EDIT(data-list) (format-list)

[(data-list) (format-list) ...]

13.11.2 Other Options (C)

The STRING, SKIP, FILE and other options, which are legal with the PUT
LIST statement, are also legal with the PUT EDIT statement.

13.12 THE FORMAT OF PUT LIST OUTPUT (0)

This section presents a brief specification of the output produced by
the PUT LIST statement. Most users should skip this section.

13.12.1 Format Without The VFORM Attribute (D)

This is the output as specified by the ANSI PL/I standard PUT LIST.

For FIXED data, the format is F(13).

For FLOAT data, the format is E(14,7,8).

13.12.2 Format With VFORM Attribute (D)

The VFORM option is a non-standard FILE option which causes CPL to use
a variable output format when printing FIXED or FLOAT items.

Implementors of other PL/I systems may find it
precise definition of the variable format rules.
those rules.

useful to have a
This section gives

In addition, in the chapter entitled "CPL Programming Examples," you
will find the variable format rules coded as a CPL PROCEDURE.

13.12.2.1 FIXED With VFORM Attribute (D) - If the value of the FIXED
quantity is 0, then print "0". Otherwise, define the following
quantities:

1. Let v = the value of the FIXED quantity

2. Let e = the number of digits necessary to represent v.
can be defined by e=FLOOR(LOGlO(ABS(v))).

3. Let s=1 if v<O, 0 if v)=O.

13-10

This

THE PUT EDIT STATEMENT (C-D)

Then the VFORM output of v is given by F(e+s).

13.12.2.2 FLOAT With VFORM Attribute (D) - If the value of the FLOAT
quantity is 0, then print "0". Otherwise" define the following
quantities:

1. Let v = the value of the FLOAT quantity.

2. Let e=FLOOR(LOGIO(ABS(v))). e represents the position of the
first significant digit in the representation of v in an F
format -- positive if the first significant digit is to the
left of the decimal point, and negative if it is to the
right.

'3. Represent v as x*lO**e, where O.l<=x<l. Represent ABS(x) as
O.dd .• ddd, where the last digit "d" is non-zero. Let n = the
number of digits "d" in this representation.

4. Let s=l if v<O, s=O if v>=O.

Given the above definitions, we can define the output format for a
variable format PUT LIST as follows:

Case 1. e>8 or e<-8. The format depends upon two subcases:

1. If n>l then use E(s+6,n-l,n).

2. If n=l then use E(s+5,0,l).

~ 2. e<=8 and e>=l. The format depends upon two subcases:

1. If n<=e then use F(e+s).

2. If n>e then use F(n+s+l,n-e).

Case 3. e>=-8 and e<=O. Use the format F(n-e+s+l,n-e), where this is
a-speCial F format with no ° preceding the decimal point.

13-11

CHAPTER 14

FILE I/O TO ARBITRARY FILES (C-D)

14.1 SIMPLE USAGE OF GET AND rUT TO ARBITRARY FILES (C)

Before discussing the input and output of CPL files, this chapter
shows some simple examples.

14.1.1 PUT To Arbitrary Files (C)

Here is a sample program segment showing output to an arbitrary file:
10. DECLARE F FILE;
20. OPEN FILE(F) OUTPUT TITLE('PROG.DT');
30. PUT FILE(F) LIST(X,Y,X+Y);

960. PUT FILE(F) SKIP(3) LIST(I,S,T**2);
970. PUT fILE(F} SKIP;
980. CLOSE FILE(F};

The TITLE option of the OPEN statement above specifies that output is
to be to the file PROG.DT on disk. Each PUT statement with the FILE
option causes the expressions to be computed and the values stored
into the specified file. The SKIP(3) option of the PUT statement
causes three carriage returns and line feeds to be inserted into the
file. The CLOSE statement causes the file to be closed.

14.1.2 GET To Arbitrary Files (C)

10. DECLARE G FILE;
20. OPEN FILE(G) INPUT TITLE('PP.DT');
30. GET FILE(G) LIST(X,Y,Z);
40. GET FILE(G} SKIP LIST(A,B);

960. CLOSE FILE(G);

This OPEN statement is similar to the one in the preceding example,
except that the file is being opened for INPUT rather than OUTPUT.
Each GET statement with the FILE option specifies that data values are
to be taken from the specified file rather than the terminal. The
SKIP option specifies that CPL should skip to the beginning of the
next line, which begins after the next line feed character.

14-1

FILE I/O TO ARBITRARY FILES (C-D)

We now turn our attention to the general description of file
input/output in CPL.

14.2 DEFAULT FILE OPTIONS FOR GET AND PUT STATEMENTS (C)

Each GET and PUT statement must have either a FILE or a STRING option.
If you supply neither, then CPL supplies a default FILE option. For a
GET statement, the default FILE option is FILE(SYSIN), and for a PUT
statement (including a ? statement), the default FILE option is
FILE(SYSPRINT) .

14.2.1 Special Properties Of SYSIN And SYSPRINT Identifiers (C)

These two identifiers are, for all practical purposes, reserved words
in the CPL language. (This is not completely true since you could
actually declare them to be other than files, but then the default GET
and PUT statements would no longer work.)

Here are the special rules which apply to these two identifiers:

1. Instead of defaulting to FIXED or FLOAT arithmetic variables,
SYSIN and SYSPRINT have the default attributes of FILE. In
addition, SYSPRINT has the attributes PRINT and VFORM.

2. If a file is opened, whether by an explicit OPEN statement or
implicitly with a GET, PUT, READ or WRITE statement, the
default device name will be TTY rather than DSK.

14.3 FILE ATTRIBUTES (D)

If an identifier is declared to have the FILE attribute, then it will
have a number of additional attributes, either by explicit declaration
or by default. These attributes are discussed in the following
paragraphs.

14.3.1 STREAM Versus RECORD Attribute (D)

There are two sets of input/output instructions in CPL. The first
set, previously described, consists of GET and PUT, and the second
set, described below, consists of READ and WRITE.

The STREAM attribute specifies that the GET and PUT statements will be
used with the file. The RECORD attribute specifies that the READ and
WRITE statements will be used. .

These two sets of statements provide completely different methods for
accessing files. The principal difference is that STREAM input/output
provides conversions of data between internal (binary) format and
external (ASCII) format in the file; RECORD input/output generally
provides no such conversion.

14-2

FILE I/O TO ARBITRARY FILES (C-D)

14.3.2 INPUT Versus OUTPUT Attributes (D)

The INPUT attribute specifies that the GET or the READ statement will
be used to access the file.

The OUTPUT attribute specifies that either the PUT or the WRITE
statement will be used to access the file.

If none of the above is specified, then the default attr~bute INPUT
will apply.

14.3.3 The PRINT Attribute (D)

This attribute implies, and is only legal with, the attributes OUTPUT
and STREAM.

It indicates that the file is intended to be printed on a printer or
typed on a terminal, and is not intended to be read by a program.

Recall that the default file option for the PUT and? statements is
FILE(SYSPRINT). Now CPL assigns to SYSPRINT the default attributes
FILE and PRINT. Thus, the default output for the PUT LIST and ?
statements follows the conventions of PRINT files.

The differences between STREAM OUTPUT files with and without the PRINT
attribute are as follows:

1. You may use the PAGE option of the PUT statement with PRINT
files, and you may not use it with non-PRINT files.

2. You may use SKIP(O) with PRINT files only, to
overprinting of lines.

force

3. Suppose the expression in your PUT LIST statement has the
CHARACTER data type. If the output file does not have the
PRINT attribute, then CPL will enclose the character string
value in single quotes. If the output file is PRINT, then
the single quotes will be omitted.

14.3.4 The ENVIRONMENT Attributes (D)

Abbrev: ENV for ENVIRONMENT

The ANSI PL/I standard permits an i~plementation to provide
"implementation-defined" file attributes which are not in the standard
itself. An implementation will use these attributes when it wishes to
take advantage of some special file features of the operating system.

CPL provides three such options:

1. VFORM

2. APPEND

3. NOPAGE

14-3

FILE I/O TO ARBITRARY FILES (C-D)

If you wish to use any of these attributes in the DECLARE or OPEN
statement, they you must use them with the ENVIRONMENT attribute.

For example, suppose you wish a file to have the PRINT, VFORM and
APPEND attributes. Then you may use the following file declaration:

DECLARE F FILE PRINT ENV(VFORM APPEND} ;

The use of each of these options is described in the following
sections.

14.3.5 The VFORM Attribute (D)

Format: ENV(VFORM}

The VFORM attribute is not permitted by the ANSI PL/I standard, and so
its use should be avoided for programs intended to be ANSI standard.

The VFORM attribute specifies that the format for
expreSSlons in a PUT LIST statement is variable.
will depend upon the value of the expression.

14.3.6 The APPEND Attribute (D)

Format: ENV(APPEND)

FIXED and FLOAT
The output format

Since APPEND is an "implementation-defined" attribute, it must be
specified with the ENVIRONMENT attribute.

The APPEND attribute may be used only for OUTPUT files. It specifies
that if the output disk file already exists, then it is not to be
erased; instead, all further output is to be appended to the end of
the existing file.

14.3.7 The NOPAGE -Attribute (D)

Format: ENV(NOPAGE)

Since NOPAGE is an "implementation-defined" attribute, it must be
specified with the ENVIRONMENT attribute.

The NOPAGE attribute may be used only for PRINT files.

The NO PAGE attribute is useful, for example, when your program is
producing a diagram which is going to run over a page. Usually, your
diagram will have a split in it, which results from an automatic page
eject taking place when the printer approaches the bottom of the page.

If the NOPAGE option is specified for your PRINT output file, however,
then those page ejects will be suppressed when you print out the file.
This means that your output will continue to be printed right over the
fold in the paper.

14-4

FILE I/O TO ARBITRARY FILES (C-D)

NOTE: When the NOPAGE option is specified, CPL will output the DC3
character (octal 23) whenever it would normally output a line feed
character (octal 12). This means that your file will be suitable for
printing, but it will not be suitable for typing at a terminal, or for
being used as an input file to CPL or any other language.

14.4 THE FILE DECLARATION (D)

FORMAT: DECLARE filename FILE [file-attributes];

where the file attributes are those described in the preceding
section.

Of course, attribute factoring and other properties of the DECLARE
statement apply here.

EXAMPLE: DECLARE (F INPUT, G OUTPUT) STREAM FILE; declares the two
files F and G.

If any of the attributes VFORM, APPEND or NOPAGE are to be used, then
they must be declared using the ENVIRONMENT keyword.

EXAMPLE: DECLARE F FILE OUTPUT ENV(VFORM APPEND) ;

14.5 THE OPEN STATEMENT (DIRECT OR COLLECT) (D)

FORMAT: OPEN open-spec [, open-spec ...] ;

where each "open-spec" consists of a list of options and attributes
separated by blanks. The following may appear in this list:

1. FILE(filename) -- this option must appear. The "filename"
must be DECLAREd to have the FILE attribute.

2. File attributes, as described above: STREAM, RECORD, INPUT,
OUTPUT,. PRINT, and the ENVIRONMENT attributes VFORM, APPEND
and NOPAGE.

3. TITLE(expression). If specified, then the "expression" must
be (or will be converted to) a CHARACTER value. This
character string will be interpreted as an operating system
file-specification, and the file so specified will be opened.

The complete format of the file-specification depends upon
the operating system you are using. For more information,
please refer to the chapter entitled "Running CPL under
TOPS-IO" or to the chapter entitled "Running CPL under
TOPS-20."

The most commonly used parts of the file-specification are
the same in both of these operating systems. Thus, in either
system, you may use the following format:

dev:name.typ

where the following rules hold:

14-5

FILE I/O TO ARBITRARY FILES (C-D)

1. The "dev" is the device name. If it is not specified,
then it will default to DSK (the disk). EXCEPTION: If
the "filename" specified by the FILE option is either
SYSIN or SYSPRINT, then the device will default to TTY
(your terminal).

2. The "name" is the file-name. If you do not specify one,
then there is no default. If the operating system
requires a filename (as it does, for example, ,for disk
devices,) then CPL will stop execution with an error
message. If the operating system does not require a
file-name (as is the case, for example, for TTY and LPT,)
then there will be no error.

3. The "typ" is the file-type. If none is specified, then
the default extension of DT will be used.

If no TITLE option is specified, then CPL will create a
default TITLE option consisting of the file name appearing in
the FILE option. Thus for example, the statement OPEN
FILE(F); will cause the file "DSK:F.DT" to be opened.

If more than one "open-spec" is specified, then CPL will open more
than one file.

If the file identifier specified by the FILE option of the OPEN
statement is already open, then CPL will simply ignore the OPEN
statement and go on to the next statement. This can lead to some
confusion if, for example, a file identifier is open for INPUT, and an
OPEN statement attempts to open the same file identifier for OUTPUT.
In this case, the OPEN statement will perform no operation, and the
program will continue with no error indication. (This convention may
seem rather surprising, but it is precisely what the ANSI PL/I
standard specifies.)

14.6 "OPEN" ATTRIBUTE MERGING (D)

The preceding discussion makes it clear that
attributes both by means of the DECLARE
identifier and by means of the OPEN statement.

you may specify file
statement for the file

When the OPEN statement is executed, all attributes specified by
DECLARE statement are merged with those specified in the
statement to form a complete attribute set.

the
OPEN

For example, if the declaration contains the attribute RECORD and the
OPEN statement statement contains the attribute SEQUENTIAL, then the
open file will have both of these attributes, and the default
attribute INPUT will be added.

If any attributes specified in or implied by the DECLARE statement
conflict with any attributes specified in or implied by the OPEN
statement, then the error will be detected during the attribute merge
and the open will fail. In this case execution will stop with an
error message.

14-6

FILE I/O TO ARBITRARY FILES (C-D)

14.7 IMPLICIT FILE OPEN (D)

If CPL must execute a GET, PUT, READ or WRITE statement that specifies
a file identifier that is not open, then CPL simulates an OPEN
statement with attributes that depend upon the statement causing the
implicit open.

If the statement is GET, for example, CPL simulates an OPEN with the
attributes STREAM and INPUT. If it is PUT, the attribute~ are STREAM
and OUTPUT. If it is READ, they are RECORD and INPUT; if it is
write, they are RECORD and OUTPUT.

If CPL opens a file implicitly in this way, you cannot specify a TITLE
option; thus, the default rules will apply. Under these rules, CPL
will open the file "name.DT", where "name" is the file identifier
name.

14.8 THE GET STATEMENT (COLLECT OR DIRECT) (D)

Format: GET option-list;

The "option-list" consists of one or more options separated by blanks.
The options may be specified in any order. They are as follows:

1. FILE(filename). Your program must contain a DECLARE
statement giving the "filename" the FILE attribute. The file
must be opened with the INPUT and STREAM attributes. If the
file is not open, then CPL will open it implicitly with these
attributes. If there is no FILE option or STRING option,
then CPL will assume FILE (SYSIN) . (No declaration is needed
for SYSIN.)

2. STRING(expression). This option conflicts with the FILE
option. If you use the STRING option, then CPL will not take
its input from a file. Instead, it will evaluate the
character expression specified in parentheses by the STRING
option, and will use that character string to take the values
requested in the input list.

3. SKIP[(expression)]. If you omit the "(expression) ," then
SKIP(l) is assumed. CPL evaluates the expression to obtain
an integer value, n, which must be positive. CPL then reads
characters from the input file until n line feeds have been
read.

You may not use the SKIP option with the STRING option.

4. LIST(vblel [,vble2 ...]). You specify a list of one or more
variables whose values CPL is to read from the specified file
or string. The variables must be scalars, or must be
subscripted array elements.

You must specify either the LIST option or the SKIP option.
specify both.

14-7

You may

FILE I/O TO ARBITRARY FILES (C-D)

14.9 THE PUT STATEMENT (COLLECT OR DIRECT) (D)

Format: PUT option-list;

where the "option-list" contains one or more
blanks. The options can appear in any order.

options separated
They are as follows:

by

1. FILE(filename). Your program must contain a DECLARE
statement giving the "filename" the FILE attribute. The file
must be opened with the OUTPUT and STREAM attributes. If the
file is not open, then CPL will open it implicitly with these
attributes. If there is no FILE option or STRING option,
then CPL will assume FILE(SYSPRINT). (No declaration is
needed for SYSPRINT.)

2. STRING(identifier). The "identifier" must be a scalar with
the CHARACTER attribute (either VARYING or NONVARYING). If
you specify this option, then CPL will not transmit the
output to a file. Instead, it will store the output into the
character string variable specified by the identifier.

3. SKIP[(expression)]. If you omit the "(expression)", then CPL
will assume SKIP{l). CPL evaluates the "expression" to
obtain an integer value, n, which must be non-negative. If n
is positive, then CPL places n carriage return-line feed
pairs into the output file. The value n=O is permitted only
for PRINT files; in this case, CPL places a carriage return
into the output file, so that the output which follows will
overprint the preceding line.

4. PAGE. You may use this option only with PRINT files. CPL
places the characters form feed and carriage return into the
output file. If the file is then printed on a line printer,
the printer will skip to a new page at this point.

5. LIST(expr [,expr •..]). CPL computes each expression
appearing in the list. CPL converts the value to character
format, and outputs the result to the specified string or
file.

6. EDIT edit-spec, where the edit-spec has the format

EDIT(output-spec) (format) [(output-spec) (format)] .••

EDIT and LIST are conflicting keywords. The full description
of this option is given in the chapter entitled "THE PUT EDIT
STATEMENT."

You must specify at least one of the options SKIP,
LIST. You may use SKIP or PAGE with LIST or EDIT.
both SKIP and PAGE in the same PUT statement. Nor may
LIST and EDIT in the same PUT statement.

14-8

PAGE, EDIT, or
You may not use

you use both

FILE I/O TO ARBITRARY FILES (C-D)

14.10 THE READ STATEMENT (COLLECT OR DIRECT) (D)

Format: READ option-list;

where the "option-list" consists of two or more options separated by
blanks. The options may be in any order. They are as follows:

1. FILE(filename). Your program must contain a DECLARE
statement giving the "filename" the FILE attribute. The file
must be opened with the INPUT and RECORD attributes. If the
file is not open, then CPL will open it implicitly with these
attributes.

2. INTO(identifier). The "identifier" must be a scalar with the
CHARACTER attribute, either VARYING or NONVARYING. CPL will
read one record from the file. (That is, CPL will read all
characters in the file up to an including the next line feed.
CPL will discard the carriage return and line feed.) The
characters in the record are stored as the value of the
specified identifier.

3. IGNORE (expression) . CPL evaluates the "expression" to obtain
an integer value, n, which must be non-negative. If n is
positive, then CPL reads and ignores n records from the file.

You must specify either the INTO option or the IGNORE option.

For the purposes of the READ statement, a "record" consists of all
characters up to and including the next line feed. CPL ignores all
carriage return characters. CPL stores all characters, up to but not
including the line feed character, into the storage occupied by the
INTO variable.

14.11 THE WRITE STATEMENT (COLLECT OR DIRECT) (D)

Format: WRITE option-list;

where the "optioh-list" consists of options separated by blanks. The
options may be in any order. They are as follows:

1. FILE(filename). Your program must contain a DECLARE
statement giving the "filename" the FILE attribute. The file
must be opened with the INPUT and RECORD attributes. If the
file is not open, then CPL will open it implicitly with these
attributes.

2. FROM(identifier). The "identifier" must be a scalar with the
CHARACTER attribute (either VARYING or NONVARYING). CPL
transmits the current value of the CHARACTER variable to the
file as a single record.

CPL transmits the characters to the output file, and then terminates
the transmission with a carriage return and line feed.

14-9

FILE I/O TO ARBITRARY FILES (C-D)

14.12 THE CLOSE STATEMENT (COLLECT OR DIRECT) (D)

Format: CLOSE FILE (filename) [, FILE (filename) ..•];

Your program must contain a DECLARE statement specifying the FILE
attribute for the "filename."

CPL closes the specified file or files. If the file is not open, then
CPL simply moves on to the next operation.

14.13 THE CLOSE FILES STATEMENT (COLLECT OR DIRECT) (D)

Format: CLOSE FILES;

WARNING: This statement is not in the ANSI PL/I standard, and so will
not be available in other PL/I implementations.

CPL will close all open files.

14-10

CHAPTER 15

BLOCK STRUCTURE AND DECLARATION SCOPE RULES (C-D)

This and the following chapters contain a complete treatment of the
way in which CPL handles program blocks.

This chapter is an introductory chapter in the sense that it contains
a great deal of technical information that is common to all types of
blocks. Therefore, the technical portions of the later chapters will
depend upon the material given here.

Nonetheless, if you are a beginning CPL programmer, you are encouraged
to skip this chapter entirely, or to skim it for an overview.

If you want to know how to code a subroutine, then start with the
chapter entitled "Subroutine and Function PROCEDUREs." That chapter
contains enough introductory material to get you started. And when
you become an expert, you can always come back and learn the
complexities.

Similarly, if you want to handle some error conditions, such as end of
file, then start reading the chapter entitled "ON-conditions and error
handling," learn the subleties as you need them.

This chapter also describes the SNAP
statement when you wish CPL to
blocks.

statement. You use the SNAP
type out a listing of all active

15.1 THE BEGIN STATEMENT (COLLECT ONLY) (C)

Format: BEGIN; END;

The BEGIN and END statements enclose a group of statements. You may
put the BEGIN and END statements, and the statements they enclose, on
separate lines of your program.

The BEGIN and END statements, as well as the statements they enclose,
form what is called a program "block."

15.2 PROGRAM BLOCKS WITH, PROCEDURE STATEMENT (D)

A PROCEDURE statement, its corresponding END statement, and the
statements they enclose, also form a program block. The usage of
PROCEDURE blocks is discussed in the chapter entitled "Subroutine ~nd
Function PROCEDUREs."

15-1

BLOCK STRUCTURE AND DECLARATION SCOPE RULES (C-D)

15.3 SCOPE RULES FOR DECLARATIONS IN BLOCKS (D)

Suppose a DECLARE statement appears within a BEGIN/END or PROC/END
block in your program. Then that declaration will apply within that
program block. Outside of that block, it will be as if that
declaration had never been made.

The "scope" of a declaration is the range of statements over which the
declaration applies. If a declaration is made inside a block, then
its scope will include, at most, only the remaining statements within
that block. If a declaration does not lie within any interior block,
then its scope may be the whole program.

Consider
10.
20.
30.
40.
50.
60.

this program segment:
A=5;
BEGIN;
DECLARE A{lO);
A(l)=5;
END;
A=lO;

Statement 30 declares A to be an array. The scope of this declaration
is the BEGIN block which begins at statement 20 and ends at statement
50. Thus, the reference to A in statement 40 is to the array A.

However, the declaration of A in statement 30 does not apply at all
outside the block. Thus, the references to A in statements 10 and 60
are to an entirely different variable A. In the absence of any
declaration for A in the program outside the BEGIN/END block, the
references to A in statements 10 and 60 are to a default scalar
variable having nothing in common (except the identifier name) with
the variable A declared in statement 30.

15.3.1 Default Vs. Explicit Declarations (D)

There are several kinds of explicit declarations in CPL:

1. The most common kind of explicit declaration is that of an
identifier appearing in a DECLARE statement.

2. If you use a statement label, then the identifier appearing
in the statement label is explicitly declared in this way.

3. In a PROCEDURE statement (to be described in a later chapter)
all identifiers appearing in the parameter list are
explicitly declared to be parameters.

All of these are explicit declarations. The discussions about scope
rules in preceding and following sections apply to all such explicit
declarations.

There is also a default declaration for each identifier. This default
declaration is that one which is given in the chapter on the DEFAULT
statement.

15-2

BLOCK STRUCTURE AND DECLARATION SCOPE RULES (C-D)

lS.3.2 Scope Of Default And Explicit Declarations (D)

Consider the following program segment:

10. DECLARE A FIXED;
20. A,B=S;
30. BEGIN;
40. DECLARE (A,B) FLOAT;
SO. A,B=S;
60. BEGIN;
70. DECLARE B FLOAT;
80. A,B=S;
90. END;

100. END;

Let us consider the scope of each of the declarations of A and B.

Since the first declaration of A is not enclosed in a block, the
default declaration of A has no scope at all. The declaration of A in
statement 10 applies only to the statements outside the block at
statement 30, since there is another declaration of A inside that
block. The declaration of A in statement 40 has a scope equal to the
entire block from statements 30 through 100. Thus the reference to A
in statement 20 is to the declaration in statement 10, while the
references to A in statements SO and 80 are to the declaration in
statement 40.

The reference to B in statement 20 is to the default declaration of B.
The scope of the default declaration of B is all statements outside
the block beginning at statement 30. The scope of the declaration of
B in statement 40 is all statements inside the block beginning at
statement 40, excluding all statements inside the block beginning at
statement 60. The scope of the declaration of B in statement 70 is
the block beginning at statement 60.

Thus the general rules are as follows:

The default declaration of an identifier has, as a scope, all parts of
the program, ~xcept those parts in the scope of an explicit
declaration of the same identifier.

An explicit declaration of an identifier applies to all statements
inside the block in which the declaration lies (or to the whole
program, if the declaration is not inside a block), with the exception
of the statements inside any block which, itself, contains an explicit
declaration of the same identifier.

lS.3.3 Labels On PROC And BEGIN Statements (D)

A label appearing on a PROCEDURE or BEGIN statement is an explicit
declaration of the statement label identifier. This declaration is
not considered to be inside the BEGIN or PROC block; instead it is in
the block encompassing the BEGIN or PROC statement.

lS-3

BLOCK STRUCTURE AND DECLARATION SCOPE RULES (C-D)

15.4 BLOCK INVOCATION OR TERMINATION (D)

This sections describes when CPL invokes or terminates a program
block.

15.4.1 How A Block Is Invoked (D)

The way in which a block is invoked depends upon the type of block.
The possibles ways are as follows:

1. A BEGIN/END block which is not an ON-unit is invoked when CPL
executes the BEGIN statement.

2. A PROCEDURE/END block is invoked by means of a CALL statement
to the specified statement, or by means of an appropriate
function reference. This subject is discussed in the chapter
on PROCEDUREs.

3. A BEGIN/END block which is an ON-unit is invoked when the
specified condition is raised. This topic will be discussed
in detail in the chapter entitled "Error Handling and
ON-conditions."

15.4.2 Normal Termination Of A Block (D)

The use of the terms "normal termination" and "abnormal termination"
for blocks is similar to their use for DO/END groups.

How a block is terminated depends upon the type of block:

1. A BEGIN/END block which is not an ON-unit is terminated
the END statement is executed. Control passes to
statement following the END statement.

when
the

2. A PROCEDURE/END block is terminated normally by execution of
a RETURN statement or of the END statement at the end of the
block. When this happens, control returns to the point where
the PROCEDURE was invoked (the CALL statement or the function
reference) .

3. A BEGIN/END block which is an ON-unit is terminated normally
by execution of the END statement. In most cases, normal
termination of an ON-unit is illegal; when it is legal, then
control returns to the point at which the condition was
raised. Please refer to the chapter on error handling for
more information.

15.4.3 Abnormal Termination Of A Block (D)

CPL terminates a block abnormally when it executes a GO TO statement
which transfers control outside of the block. When this happens,
execution continues with the statement to which the GOTO was made.

15-4

BLOCK STRUCTURE AND DECLARATION SCOPE RULES (C-D)

15.5 THE BLOCK PROLOGUE AND EPILOGUE (D)

CPL performs special additional operations when a block is invoked or
terminated. These special operations are called the block prologue
and epilogue. This section describes these special operations.

15.5.1 The Block Prologue (D)

Whenever a new block is invoked, as described in the above rules, CPL
performs a prologue. The block prologue performs the following:

1. If the block is a PROCEDURE/END
statement specifies parameters,
matched to the arguments, in the
chapter on PROCEDUREs.

block,
then
manner

and the PROCEDURE
the parameters are

described in the

2. CPL allocates storage for each variable explicitly declared
In the block with the AUTOMATIC attribute. (This is the
default, unless modified by a DEFAULT statement.)

15.5.2 The Block Epilogue (D)

An epilogue is performed for each block which is terminated, whether
normally or abnormally. All AUTOMATIC storage which was allocated by
the prologue is freed.

15.6 RECURSIVE BLOCKS (D)

PROCEDURE and ON-unit blocks may be recursive. This means that there
may be several invocations of the same block active at the same time.
(This happens, for example, when a PROCEDURE calls itself. See the
chapter on PROCEDUREs for examples of this.)

When a block is invoked recursively, separate copies are made of all
the AUTOMATIC variables declared in that block. In this way, each
AUTOMATIC variable in a block invocation is unique to that block
invocation, and there are as many copies of it as there are additional
invocations of the same block.

15.7 THE SNAP STATEMENT (DIRECT OR COLLECT) (C)

Format: SNAP

The SNAP statement causes CPL to type out on your terminal a "snap
dump" of the current status of all active blocks in the execution of
your program. You will find this statement useful for debugging your
program when you are confused about which program blocks are active.

The blocks are listed in reverse order of invocation, with the most
recently activated listed first.

15-5

BLOCK STRUCTURE AND DECLARATION SCOPE RULES (C-D)

Here is a typical SNAP dump:

STMT# BLOCK TYPE
85.+3 70. PROC
50. 40.+1 ON
95. 90. BEGIN
90. 70. PROC
10.

Each line of this dump contains the following information about one
active block:

1. STMT# is the statement number of the "current" statement
active in that block.

2. BLOCK is the statement number of the first statement in the
BLOCK. (This is a BEGIN statement or a PROCEDURE statement.)

3. TYPE is the type of block -- PROC for PROCEDURE/END block,
BEGIN for BEGIN/END block which is not an ON-unit, and ON for
an ON unit.

The blocks are listed in reverse order of invocation.

Thus, the above example gives the following information:

The current statement in the current block has statement
number 85.+3. (This means that it is the fourth statement on
line 85 of your program.) This statement is in the PROCEDURE
block which begins at line 70.

That PROCEDURE was invoked at line 50, in the ON-unit which
begins in line 40.+1.

The ON-unit was invoked by an error in statement 95 in the
BEGIN block which begins at statement 90.

This BEGIN block was invoked at statement 90 (the BEGIN
statement)~ which is in the PROCEDURE which begins at
statement 70. This is a recursive invocation of that
PROCEDURE, since the first line also shows the same PROCEDURE
active.

Finally, this PROCEDURE was invoked by the statement at line
10.

15-6

CHAPTER 16

STORAGE CLASSES (D)

Most users will not need to understand this chapter to write programs.
For this reason, you may skip this chapter on first reading.

Each CPL variable has a storage class. Either you declare the storage
class explicitly (as in a DECLARE statement) or else CPL assigns a
default storage class.

16.1 DEFAULT STORAGE CLASS RULES (D)

A default storage class may only be STATIC or AUTOMATIC. It will
always be AUTOMATIC, unless your program contains a DEFAULT statement
specifying a default attribute of STATIC. For more information on
doing this, refer to the chapter entitled "The DECLARE and DEFAULT
Statements."

16.2 DIFFERENCES AMONG THE STORAGE CLASSES (D)

The different storage classes are listed below. For each storage
class, the description below will give the following information:

1. How the. storage class is declared or otherwise specified.

2. Whether the storage class specifies that the identifier is a
constant Or a variable.

3. If it is a variable, when storage for the variable is
allocated and freed.

16.3 LIST OF STORAGE CLASSES (D)

Here is a list of all the storage classes that CPL supports:

16-1

STORAGE CLASSES (D)

16.3.1 AUTOMATIC Storage Class (D)

Abbrev: AUTO for AUTOMATIC

Every CPL identifier which is declared in a DECLARE statement is given
a storage class of AUTOMATIC, unless:

1. Your program contains a DEFAULT statement specifying that the
default storage class should be STATIC.

2. The declaration specifies a different storage class (STATIC,
CONTROLLED, BASED, or PARAMETER).

3. The attribute BUILTIN is declared.

4. The FILE attribute is declared.

If a variable has the AUTOMATIC storage class attribute, then storage
for it is allocated when the program block in which it is declared is
entered. It is freed when the block is terminated.

EXAMPLE: Consider the program segment

BEGIN ;
DECLARE A(lOOO) FLOAT AUTOMATIC

END ;

The array A, when allocated, requires 1000 words. This storage is not
actually allocated until the BEGIN statement is executed.

EXAMPLE: You may use variables in
extent expressions are evaluated
before the storage is allocated.

the extent expressions. These
at the time the block is entered,

Consider the following program segment:

N=lO ;
BEGIN ;
DECLARE A(N,N+l) AUTO

END ;

When the BEGIN statement is executed, the values of Nand N+l are
computed using the current value (10) of N. The array bounds are set
to those values. Thus, the array is allocated with dimensions 10 and
11.

The above example uses the heretofore undefined term "extent
expression." This term refers to any expression, appearing in a
declaration, which specifies a bound or size. There are three places
where extent expressions occur: .

1. A dimension bound expression, either an upper or lower bound,
is an extent expression. The preceding example shows
variable extent expressions for the upper bound of a
dimension expreSSIon. Another EXAMPLE: DECLARE A(I:J+K);
contains variable extent expressions for both the lower bound
(" I") and the upper bound ("J+K").

16-2

STORAGE CLASSES (D)

2. The parenthesized expression following the CHARACTER
attribute is an extent expression. EXAMPLE: CHAR(23) and
CHARACTER (N+M) VARYING contain the extent expressions "23"
and "N+M".

3. Same for the BIT attribute.

16.3.2 STATIC Storage Class (D)

An identifier will be given the STATIC storage class attribute if
either a DEFAULT statement specifies a STATIC default, or the
declaration of the identifier specifies STATIC.

STATIC storage is
statement. It

allocated at the time
is never freed (unless

you
you

enter
erase

the
the

DECLARE
DECLARE

statement) .

Extent expressions in declarations for STATIC storage may not contain
any variables.

16.3.3 CONTROLLED Storage Class (D)

Abbrev: CTL for CONTROLLED

If you wish a variable to have the CONTROLLED attribute you must
specify it in the DECLARE statement.

CPL never automatically allocates or
Instead, you must explicitly allocate
indentifier with an ALLOCATE statement,
statement.

frees CONTROLLED storage.
storage for a CONTROLLED

and free it with a FREE

The ALLOCATE and FREE statement are described later in this chapter.

16.3.4 BASED Storage Class (D)

The BASED storage class is significantly different from all the
others, and so it is described in a later chapter, "BASED Storage and
POINTERs."

Please refer to that chapter for more information.

16.3.5 PARAMETER Storage Class (D)

Abbrev: PARM for PARAMETER

An identifier is declared to be a PARAMETER by virtue of its
appearance in the parameter list of a PROCEDURE statement.

Your program may also contain a separate declaration of the same
identifier in the same block for the purpose of specifying the data
type of the parameter. In that case, the declaration may specify the
PARAMETER attribute.

16-3

STORAGE CLASSES (D)

Parameters are discussed fully in the chapter entitled "Subroutine and
Function PROCEDUREs."

16.3.6 NAMED CONSTANT Storage Class (D)

Any identifier with the NAMED CONSTANT is a constant, not a variable.
It may never appear on the left hand side of an assignment statement.

A NAMED CONSTANT is declared in the following ways:

1. Any identifier declared with the FILE attribute is a NAMED
CONSTANT.

2. A statement label is a NAMED CONSTANT.

16.4 THE ALLOCATE STATEMENT (DIRECT OR COLLECT) (D)

Abbrev: ALLOC for ALLOCATE

format: ALLOCATE ident [,ident] ...

The "ident" must be an identifier with the CONTROLLED storage class
attribute.

CPL allocates storage for the specified identifier. If storage has
already been allocated, then CPL allocates an additional copy.

16.5 THE FREE STATEMENT (DIRECT OR COLLECT) (D)

Format: FREE ident [, ident] ...

The "ident" must be an identifier with the CONTROLLED storage class
attribute.

There must exist at least one allocation of the specified identifier.
CPL releases the storage occupied by the most recent allocation.

16.6 EXAMPLES OF CONTROLLED STORAGE (D)

Consider the following program segment:

DECLARE A CONTROLLED;
ALLOCATE A;
A = 2;
ALLOCATE A;
A = 12;
PUT LIST(A,ALLOCATION(A))/* RESULT IS "12 2" */;
FREE A;
PUT LIST(A,ALLOCATION(A))/* RESULT IS "2 1"*/;

16-4

STORAGE CLASSES (D)

The first ALLOCATE statement creates the first allocation of A. The
second ALLOCATE statement creates a second allocation. The FREE
statement frees the most recent allocation.

The ALLOCATION built-in function returns the current number of
allocations of the specified CONTROLLED identifier.

It is also legal for a CONTROLLED declaration
extent expressions (array bounds and string
following example:

DECLARE A(N,N+l) CONTROLLED:
N = 12:
ALLOCATE Ai

to ccontain
lengths)

variable
as in the

When the ALLOCATE statement is executed, the value of N is 12.
Therefore, the array will be allocated with the dimensions (12,13).

16-5

CHAPTER 17

SUBROUTINE AND FUNCTION PROCEDURES (C-D)

17.1 WHY DO YOU NEED PROCEDURES? (C~

There are two reasons why you will use PROCEDUREs.

1. To save space. Suppose your program contains a section of
code performing a specific operation, and suppose that this
operation must be performed in several different places in
the program. Instead of repeating the same section of code
in several different sections of your program, you can save a
lot of space by writing the section of code once as a
subroutine PROCEDURE and then calling that procedure each
time you want to execute the section of code.

See the example below.

2. To provide program "modularity." A program is "modular" if it
is broken up into small PROCEDUREs each of which performs a
simple function.

This use for PROCEDUREs is different from the preceding one.
You may have a large complex section of code in your program.
You may remove a section of this code which performs a simple
function and place it into a subroutine. You would do this
even though that subroutine would be called only once. In
this way, you have simplified a large section of code, and
you have made it easier to understand, debug and maintain.

For more information on this concept, please refer to the
chapter entitled "Structured and GOTO-less Program."

EXAMPLE: Suppose there are several points in your program where you
wish to type out a table of values. You code a subroutine TABLEOUT
which types out the the table. Then, at each point in your program
where you wish to type out the table, you insert the statement "CALL
TABLEOUT:".

Your program may end up looking something like this:

CALL TABLE OUT

CALL TABLEOUT

CALL TABLEOUT

17-1

SUBROUTINE AND FUNCTION PROCEDURES (C-D)

TABLEOUT: PROCEDURE ;
/* THIS PROC TYPES OUT THE TABLE */

RETURN ;
END TABLEOUT;

17.2 PROCEDURE ARGUMENTS AND PARAMETERS (C)

In the preceding example, we assumed that the subroutine PROCEDURE was
to do exactly the same thing each time it was called.

But suppose you wish a PROCEDURE to operate in the same general way
each time it's called, but with some minor differences, and you wish
to specify the difference when you call it.

For example, suppose you wish to write a subroutine which prints out
the n'th through m'th records of a file, with nand m to be specified
at the time that the subroutine is called. The following program
segment illustrates such a subroutine:

CALL TYPEREC(30,40);

CALL TYPEREC(50,70);

GET LIST (I ,J) ;
CALL TYPEREC(I,J)

TYPEREC: PROC(N,M);
DECLARE F FILE, C CHAR(lOO) VAR;
OPEN FILE(F) RECORD;
READ FILE(F) IGNORE (N-l) ;
DO I=N TO M;
READ FILE(F) INTO(C);
PUT SKIP LIST(C);
END;
CLOSE FILE(F);
RETURN;
END TYPEREC;

The first call to TYPEREC will cause records 30 through 40 to be typed
out. The second call will cause records 50 through 70 to be typed.
And the third call specifies variable limits, determined by the values
of I and J which are typed in as a result of a GET LIST statement.

Each of the CALL statements in the above example specifies two
"arguments,1I 30 and 40 in the first CALL, 50 and 70 in the second
CALL, and I and J in the third. These arguments may be any
expressions. They are evaluated before control passes to the
subroutine.

Now look at the PROCEDURE statement in the above example. This
statement specifies two "parameters," nand m. When the PROCEDURE is
invoked, the two parameters will be given values equal to the two
arguments (30 and 40 or 40 and 50 or I and J in the above example).
Thus, in the first CALL, n will equal 30 inside the procedure, and m

17-2

SUBROUTINE AND FUNCTION PROCEDURES (C-D)

will equal 40. In the second CALL, n will be given the value 50 and m
the value 60. And in the third call, nand m will be given whatever
values I and J have.

17.2.1 Difference Between Argument And Parameter (C)

Be certain that you understand the difference between an "argument"
and a "parameter." An argument appears in a CALL statement and a
parameter appears in a PROCEDURE statement. The CALL statement must
contain exactly the same number of arguments as there are parameters
in the PROCEDURE statement. When the CALL statement is executed, each
of the arguments is evaluated, and the parameters take on these values
during execution of the statements in the PROCEDURE.

17.2.2 Real Versus "dummy" Arguments (C)

What happens if a PROCEDURE assigns a value to one of the parameters?
Does the value of the argument get changed? The answer is "yes,"
unless a dummy argument is created.

For example, consider the following program:

10.
20.
30.

100.
110.
120.
130.
140.

CH:

A,B=5;
CALL CH(A,B+l);
?A,B;

PROCEDURE (X,Y) ;
?X,Y
X,Y=lO;
RETURN;
END CHi

Let us consider what happens in the above program. In statement 20,
the arguments A and B+l are evaluated and the values, 5 and 6
respectively, are given to the parameters X and Y. Therefore, when CH
is entered statement 110 will print out the values 5 and 6. Then
statement 120 assigns the value 10 to the parameters X and Y. The
assignment to X will cause the value of the argument A to be changed
to 10. But the assignment to Y will leave the value of B unchanged
for the following reason: When the argument B+l was evaluated, a
"dummy" argument is created, and the value 6 is assigned to it. When
an assignment is made to the parameter Y, the value of the dummy
argument is changed, but the value of B is not modified.

Therefore, when the RETURN statement in statement 130 is executed,
control will return to statement 30, and this statement will print the
values 10 and 5.

17.2.3 Data Types Of Arguments And Parameters (C)

Arguments and parameters may have any computational data type.
Consider, for example, the following program:

17-3

10.
20.
30.
40.

100.
110.
120.
130.
140.

DE:

SUBROUTINE AND FUNCTION PROCEDURES (C-D)

DECLARE C CHAR{S);
C='ABCDE';
CALL DE{C);
?C;

PROCEDURE{P) ;
DECLARE P CHAR{S);
P = '12345';
RETURN;
END DE;

Notice that the PROCEDURE DE contains a separate declaration of P for
the attributes CHAR{S). In the CALL in statement 30, the argument C
also is CHAR{S), and so no dummy argument is created. When P is
assigned a value in statement 120, the value of C is changed, so that
statement 40 will print the value '12345'.

If the data type of the argument does not precisely match the data
type of the parameter, then the argument will be converted to the data
type of the parameter and a dummy argument with that data type and
value will be created.

The complete rules on argument and parameter matching are given below
in this chapter.

17.3 FUNCTION PROCEDURES (C)

A procedure
statement,
expression.

can be invoked either as subroutine, using a CALL
or as a function, by referencing the PROCEDURE name in an

The PROCEDURE may simply compute a complicated expression.
for example, the following PROCEDURE:

HYP: PROCEDURE (A,B) ;
RETURN{SQRT{A**2+B**2)) ;
END HYP;

Consider,

This PROCEDURE computes the length of the hypotenuse of a right
triangle with legs A and B.

For example, the statement "X=HYP{3,4):" will assign to X the value 5.
In executing this statement, the parameters A and B take on the values
of the arguments 3 and 4, respectively. The formula SQRT{A**2+B**2)
is computed and substituted into the expression which invoked the
procedure HYP.

Note that a different form of the RETURN statement was used. In this
case, the RETURN statement specified an expression which was to be
computed and returned to the caller.

The rules for arguments and parameters presented ~lsewhere in this
chapter apply to function PROCEDUREs just as they apply to subroutine
PROCEDUREs.

17-4

SUBROUTINE AND FUNCTION PROCEDURES (C-D)

17.3.1 Further Examples Of Function Procedures (C)

Here is a PROCEDURE which computes and returns the factorial of the
argument:

FAC: PROCEDURE (NUM) ;
PROD 1;
DO I = 1 TO NUM;
PROD = PROD*I;
END;
RETURN (PROD) ;
END FAC;

If you typed "?FAC(6)", the value 720 would be typed out.

A PROCEDURE can return any computational data type. You specify with
the RETURNS option of the PROCEDURE statement what the data type to be
returned should be.

Here, for example, is a PROCEDURE which has no parameters and which
returns a CHARACTER string containing the time of day in the format
hh:mm. It uses the TIME built-in function which returns the time of
day as a character string in the format hhmmssddd (hours, minutes,
seconds, thousandth's of a second -- see the description of the TIME
built-in function in the chapter on built-in functions).

T: PROCEDURE RETURNS(CHAR(5));
DECLARE TEMP CHAR(9);
DECLARE TIME BUILTIN;
TEMP = TIME () ;
RETURN (SUBSTR (TEMP, 1,2) ! ! ' : ' ! ! SUBSTR (TEMP) ,3,2)) ;
END T;

For example, if you invoke this PROCEDURE at 2:30 in the afternoon,
say, by means of the statement "?T()", then it will return the
character string '14:30'.

17.4 THE PROCEDURE STATEMENT (COLLECT ONLY) (C)

Abbrev:

Format:

PROC for PROCEDURE

label: PROCEDURE [(parameter-list)] [returns-option];
END;

where the optional "parameter-list" has the format

(identifier [,identifier •..])

and the optional returns-option has the format:

RETURNS (data type)

The data type in this case is one of the following, where "integer"
stands for any positive integer: FIXED, FLOAT, CHAR(integer) ,
CHAR(integer) VARYING, BIT (integer) , or BIT (integer) VARYING.

If you omit the returns-option, then CPL will assume one. CPL will
assume a returns-option of either FIXED or FLOAT, depending upon the
default attributes of the "label" of the procedure. If there is no

17-5

SUBROUTINE AND FUNCTION PROCEDURES (C-D)

DEFAULT statement in your program, then RETURNS (FLOAT) will be
assumed. If you have a DEFAULT statement, then the default data type
of the RETURNS will be exactly the same as it would be for the
identifier "label," if "label" were being used as an ordinary
variable.

When the PROCEDURE is invoked, either as a subroutine with a CALL
statement, or as a function, then the parameters are assigned the
values of the arguments, the point at which the PROCEDURE was invoked
is saved, and control passes to the statement following the 'PROCEDURE
statement. When a RETURN statement is encountered, then control
passes back to the point of invocation.

The exact rules for matching arguments and parameters are discussed
later in this chapter.

17.5 THE CALL STATEMENT (DIRECT OR COLLECT) (C)

Format: CALL name [(argument-list)];

The optional argument-list has the format:

(expression [,expression] ...)

The "name" must be the label of a PROCEDURE statement appearing in
your program. The number of arguments in the argument list must be
exactly equal to the number of parameters appearing in the PROCEDURE
statement.

CPL takes the following steps to execute a CALL statement:

1. Each of the expressions in the argument list is evaluated.
Each argument is matched with the corresponding parameter in
a manner described fully later in this chapter.

2. CPL saves and remembers the exact place from which the CALL
took place. This is called the "point of invocation" of the
PROCEDURE, since it is the place where the PROCEDURE was
invoked.

3. CPL transfers control to the statement
PROCEDURE statement.

17.6 INVOCATION OF A PROCEDURE AS A FUNCTION (C)

following the

Exactly the same steps are taken if the PROCEDURE is invoked as a
function. The "point of invocation," however, is a reference to the
PROCEDURE appearing in an expression.

In this case, you must return from the PROCEDURE with a RETURN
statement specifying an expression. The value of this expression will
be substituted for the function reference in the expression at the
point of invocation.

17-6

SUBROUTINE AND FUNCTION PROCEDURES (C-D)

Although it is unusual, the same PROCEDURE can be used as both a
function and a subroutine PROCEDURE. The only rule is that if a
PROCEDURE is invoked as a subroutine (with a CALL statement) then you
must return with a simple RETURN statement with no expression; but
for a function invocation, you must return with a RETURN statement in
the format RETURN (exp) .

17.7 THE RETURN STATEMENT (DIRECT OR COLLECT) (C)

Format: RETURN [(expression)];

The form without the expression must be used if the PROCEDURE was
invoked as a subroutine (with a CALL statement.)

The form with the expression must be used if the PROCEDURE was invoked
as a function. In this case, the expression is evaluated and
converted to the data type of the returns-option, if any, or of the
default returns-option if you didn't specify one in your PROCEDURE
statement.

In either case, control returns to the "point of invocation";
is, the point where the PROCEDURE was originally invoked.

that

The RETURN statement must appear inside a PROCEDURE. It may appear
inside a BEGIN/END block nested inside a PROCEDURE, as long as the
BEGIN/END block is not an ON-unit. In that case, the BEGIN/END block
is terminated normally before a RETURN is made from the PROCEDURE.

A RETURN statement may not be executed from an ON-unit.

17.7.1 Executing The End Statement Of A Procedure (C)

If you execute the END statement of a PROCEDURE, then a RETURN
statement with no expression is simulated. This is legal only in a
PROCEDURE invoked as a subroutine (with a CALL statement).

17.8 MATCHING ARGUMENTS TO PARAMETERS (D)

When a PROCEDURE is invoked, the CALL statement or function reference
must specify exactly the same number of arguments as there are
parameters in the PROCEDURE statement.

17.8.1 Data Attributes Of The Parameters (D)

Each parameter in your PROCEDURE has specific data attributes. You
may specify these data attributes in a separate DECLARE statement in
the PROCEDURE. The rules for such a declaration are given below.

If you do not have a separate declaration for the parameter, then CPL
assigns default attributes to the parameter in the same way that it
assigns them to an ordinary identifier. That is, if there is no
DEFAULT statement in your program, then the parameter will be a FLOAT
scalar. If you have a DEFAULT statement, then the parameter will be a

17-7

SUBROUTINE AND FUNCTION PROCEDURES (C-D)

FIXED or FLOAT scalar, depending upon the first letter of the
parameter name as specified in your DEFAULT statement.

17.8.2 Rules For The Separate Declaration For The Parameter (D)

Here are the rules for the attributes which may be specified for a
parameter:

1. Any variable data type may be specified -- FIXED, FLOAT, CHAR
[VAR], BIT [VAR, POINTER]. If no data type is specified,
then the usual default rules apply.

2. The storage class PARAMETER may be specified. No other
storage class may be specified. If no storage class is
specified, then the storage class will default to PARAMETER.
(CPL knows that the identifier is a parameter since it
appeared in the parameter list of a PROCEDURE statement.)

3. You may specify that the parameter is an array. You do this
by specifying array bounds in the usual manner.

4. You may not use variables in the length specification of a
BIT or CHAR attribute, or in the dimension bounds for an
array specification. (That is, you may not use variable
extent expressions in your declaration.)

5. However, you may code an asterisk in place of a length
specification or an array bound. If you do this, then you
must specify PARAMETER. In that event, the corresponding
values will be taken from the arguments.

For example, the following declarations are legal:

DECLARE A CHAR(*) PARAMETER;
DECLARE B(*,*) PARAMETER;
DECLARE C(*) BIT(*) VAR PARAMETER;

17.8.3 Rules For Matching Arguments And Parameters (D)

For each argument/parameter pair in a PROCEDURE invocation, there are
three things that CPL can do:

1. CPL can match the argument directly to the parameter without
creating a dummy. In this case, any change to the parameter
will change the value of the argument.

2. CPL can create a dummy argument, and match that to the
parameter. In that case, any change to the parameter will
change the value of the dummy, but will not change the value
of the original argument.

3. CPL can take an error stop. This will happen if the argument
and parameter are incompatible.

The following sections give the rules when each of these happens.

17-8

SUBROUTINE AND FUNCTION PROCEDURES (C-O)

17.8.3.1 Case 1 -- No Dummy Is Created (D) - This case applies if all
the followIng are true:

1. The argument must be simple identifier or
identifier.

subscripted

2. The data type of the argument must be identical to the data
type of the parameter. Note that CHARACTER VARYING is a
different data type from CHARACTER NONVARYING.

3. If the argument is a scalar or a subscripted array element,
then the parameter must be a scalar. If the argument is an
array, then the parameter must be an array with the same
number of dimensions.

4. For each length value or array bound value among the
attributes of the argument, the corresponding extent
expression must be either (a) an asterisk or (b) a constant
expression equal to that value in the argument.

17.8.3.2 Case 2 -- A Dummt Ar~ument Is Created (0) - A dummy argument
is created when all the fo lOWIng happen:

1. The argument and the pa(ameter are both scalar.

2. One of the conditions of case I does not hold. This means
that the argument is an expression or constant or it has a
different data type or length value from the parameter.

17.8.3.3 Case 3 -- Match Cannot Be Made (0) - This is the error case.
This case holds whenever qny of the following hold:

1. The argument has a non-computational data type.

2. The argument is a scalar and the parameter is an array.

3. The argument is an array and the parameter is a scalar.

4. The argument and parameter are both arrays, but they have a
different number of dimensions.

5. The argument and parameter are both arrays, but they have
different data types.

6. The argument and parameter are both arrays with the same data
type, but either the length expression or the array bounds
for the parameter are different from those for the argument.
This cannot happen for any extent expression in the parameter
declaration for which an asterisk is coded.

17-9

SUBROUTINE AND FUNCTION PROCEDURES (C-D)

17.8.4 Some Examples Of Argument Matching {D}

Consider the following program:

10.
20.

100.
110.
120.

200.

PR:

DECLARE D CHAR(lOO}, E{lO} FLOAT
CALL PR(A,B, (C) ,D,E(3»;

PROCEDURE(V,W,X,Y,Z)
DECLARE V FIXED ;
DECLARE Y CHAR{*) ;

END PR ;

Let us consider each of the four argument/parameter pairings.

1. The argument A is FLOAT and the parameter V is FIXED. A will
be converted to FIXED and a dummy argument will be created.

2. The argument B and the parameter Ware both FLOAT, so that no
dummy will be created.

3. Enclosing the argument C in parentheses is a signal to CPL to
create a dummy argument. This happens because (C) is
considered to be an expression.

4. The argument D is CHAR(lOO) and the parameter Y is declared
to be CHAR{*}; No dummy argument is created. If you
reference LENGTH(Y} inside the PROCEDURE, then CPL will
return 100.

5. E(3} is a FLOAT scalar argument and since the parameter Z is
FLOAT, no dummy will be created. If you change the value of
Z inside the PROCEDURE, then the value of E(3) will be
changed.

17.9 RECURSIVE PROCEDURES {D}

It is possible for you to invoke a procedure which is already active.
If this happens, then the invocation is called a "recursive"
invocation.

If you invoke a PROCEDURE recursively, then CPL makes new copies of
the parameters and allocates new copies of all AUTOMATIC storage. All
STATIC variables are the same in all invocations of the PROCEDURE.

Storage allocation has been described in detail in a preceding
chapter, entitled "Block Structure and Declaration Scope Rules."

Generally if you have a choice between using a recursive procedure and
coding a DO-loop, you should choose the latter since it is more
efficient.

The FAC PROCEDURE shown near the beginning of this chapter is coded
with a loop. Here is another way to code the same function using a
recursive PROCEDURE.

17-10

SUBROUTINE AND FUNCTION PROCEDURES (C-D)

This PROCEDURE is based on the following "recursive" definition of
factorial:

FAC(O) = 0
FAC(N) = N*FAC(N-l)

If you have never seen this recursive definition of factorial, you
should try to use the formulas in the definition to compute FAC(3), to
see how it works.

Here is the translation of this definition into a recursive PROCEDURE:

FAC: PROCEDURE (NUM) ;
IF NUM<l THEN RETURN(l);
ELSE RETURN(NUM*FAC(NUM-l});
END FAC ;

17.10 USE OF THE SNAP STATEMENT (C)

If your program stops in the middle of a PROCEDURE and you are
wondering how it got there, then type the "SNAP" statement.

The format of the snap dump produced by the SNAP statement has been
described in the chapter on block structures.

17-11

CHAPTER 18

ON-CONDITIONS AND ERROR HANDLING (C-D)

18.1 WHY DO YOU NEED ON-CONDITIONS? (C)

Suppose you are writing a program which is to be used by other people.
You would like this program to continue executing under all
circumstances, even in case of error. You may use ON-units to
guarantee this.

There are
executing.

a number of reasons that
Here are some possibilities:

such a program might

1. The person running the program may type in illegal input.

stop

2. The program may be unable to open an output file due to a
lack of file space.

3. The program may reach end-of-file on an input file.

4. The program may contain a hitherto unknown bug.

By means of ON-units, you may
analyze all of the above
execution is to continue.

write your program so that it can
conditions and decide whether and how

18.2 SOME INTRODUCTORY EXAMPLES (C)

18.2.1 Example Of An ERROR ON-unit (C)

Suppose you are writing a program for others to use, and the p~ogram
contains a GET LIST statement. You would like the program to continue
even if the person using the program types invalid input in response
to the GET LIST.

Consider the following program segment:

ON ERROR BEGIN;
PUT LIST('ILLEGAL INPUT TRY AGAIN'); PUT SKIP;
GO TO GET;
END;
PUT LIST('ENTER VALUE: ');

GET: GET LIST (VALUE) ;
ON ERROR SYSTEM;

18-1

ON-CONDITIONS AND ERROR HANDLING (C-D)

Let us suppose that this program is executed.
the first ON statement, here is what happens:

When control reaches

1. CPL remembers the fact that you have executed an ON statement
here, in case an error later occurs.

2. CPL skips over all statements between the BEGIN sub-statement
of the ON statement and its corresponding END statement (3
statements down).

3. CPL transfers control to the PUT LIST statement following the
END statement.

Now, when the GET LIST statement is executed, if there is no error in
the input, then execution will simply continue. But if there is an
error, then CPL will "raise" the "established ON-unit": that is, CPL
will execute the statements between the BEGIN and END statements which
appear in conjunction with the ON statement.

Therefore, the function of the ON
statement, or group of statements,
event an error occurs.

statement is: To specify a
which is to be executed in the

The last statement in the segment above, ON ERROR SYSTEM, reverses the
effect of the preceding ON statement. When the SYSTEM option is used,
it tells CPL that, for any subsequent errors, the standard system
action is to be taken. The standard system action is usually to type
an error message and return to command level. It is a good
precautionary measure to include this statement in the program. If
you do not include it, then if any unexpected error occurs (say, due
to an error in the program), then the preceding ON ERROR statement
will still be in effect, and the results will be confusing~

18.2.2 Example Of An ENDFILE ON-unit (C)

Let us consider a different type of "error," reaching the end of an
input file. This~ of course, is not really an error. But it has one
feature of an error in that it is unpredictable when you are
writing the program, you cannot usually predict when an end of file
will occur.

Here, for example, is a program segment which adds up all the numbers
in a file

LOOP:

EOF:

DECLARE F FILE :
OPEN FILE(F) INPUT
ON ENDFILE(F) GO TO EOF:
SUM = 0;
GET FILE(F) LIST(X)
SUM = SUM + X:
GO TO LOOP:
CLOSE FILE(F):

In this program segment, the third statement specifies the following:
If an end of file occurs in file F, then GOTO the statement with
statement label EOF.

18-2

ON-CONDITIONS AND ERROR HANDLING (C-D)

In this example, the "ON-unit" consists of just a single statement
GOTO EOF rather than a BEGIN/END block containing a group of
statements. In this case, CPL places a dummy BEGIN statement before
the GOTO statement, and a dummy END statement after; CPL does this
without any indication to you that it has done so.

18.3 THE ON STATEMENT (COLLECT ONLY) (C)

Format:
or

ON condition-list [SNAP] on-unit;
ON condition-list SYSTEM

The "condition-list" is either a single condition-name (these are
described below) or a list of condition-names, separated by commas.

The "ON-unit" is either a single statement, usually a GOTO statement,
or else a BEGIN/END block containing a group of statements. If it is
a single statement, it may not be an IF, DO, END, RETURN, FORMAT,
PROCEDURE, DECLARE or DEFAULT statement. An ON-unit, whether a single
statement or a BEGIN/END block, may not have a statement label. (This
restriction is as specified by the ANSI PL/I standard.)

In the first of the two formats specified above, the ON statement
specifies to CPL what action is to be taken when an error or other
exceptional condition occurs. CPL "remembers" the location of the
ON-unit to be executed when the exceptional condition occurs and
transfers control to the statement following the ON-unit. If the
exceptional condition subsequently occurs, then CPL "invokes" the
ON-unit, and executes the statement or statements specified therein.
The ON-unit statement or statements are not executed until the
exceptional condition occurs.

If you specify the SNAP option, then, before the ON-unit statements
are executed, CPL will type out the following:

1. The error message which would have been typed if no ON-unit
had been established.

2. A snap dump, identical in format to the snap dump produced by
the SNAP statement. Refer to the description of that
statement in the chapter on "Block Structure and Declaration
Scope Rules."

In the second of the formats, the format using the SYSTEM option, the
ON statement specifies that CPL is to take the "standard system
action" for the exceptional condition. For most errors, this means
that CPL will type an error message and terminate execution.

18-3

ON-CONDITIONS AND ERROR HANDLING (C-D)

18.4 GOOD PROGRAMMING PRACTICES WITH ON-UNITS (C)

18.4.1 Normal Termination Of An On-unit (C)

In the examples given above, all of the ON-units contained a GOT a
statement, and so when the ON-units were invoked, the invocations were
always terminated "abnormally", by means of a GOTO statement.

If your program executes the END statement of an ON-unit, then you are
attempting to terminate the ON-unit normally. This is usually an
error.

It is good programming practice to make certain that your ON-units
always terminate abnormally, with a GOTO statement which transfers
control out of the ON-unit.

18.4.2 Avoiding ON-unit Recursion Loops (C)

Suppose you executed an ON ERROR statement, specifying an ON-unit to
be invoked when any error occurs.

Now let us suppose that an error occurs and your ON-unit is invoked.
Let us suppose further that lightning strikes again and an error
occurs inside your ON-unit. Then the ERROR ON-unit will be invoked
again. And if the same error occurs again, you will get into an
infinite loop raising the ON-unit over and over, recursively. This
will continue until you have so many active invocations of your
ON-unit that you run out of core storage.

To guard against this possibility, you should use the SNAP option, so
that you will be able to see your program entering this loop. If you
do not wish to use the SNAP option, then you should put a statement in
the beginning of your ON-unit whose execution will permit the looping
process to stop. For example, you may use the following as the first
statement of your ON-unit:

1. ON ERROR SYSTEM; If an error occurs while the ON-unit is
active, then execution will stop and control will return to
the terminal. No loop will occur. (NOTE: As will be
explained below under "Scope of an ON-unit," ·when the ON-unit
terminates without an error, say by a GOTO statement, then
the ON ERROR SYSTEM will be cancelled.)

2. PUT LIST something. If the first statement of your ON-unit
types something out, then you will be able to recognize when
the loop described above occurs, an you can interrupt it with
Control-C. A good choice for something to type out is the
current value of the ONMSG built-in function, described
below.

18.4.3 The ONMSG Built-in Function (C)

This built-in function returns a CHARACTER string containing the error
message which would have been typed out if no ON-unit had been
specified for the error.

18-4

ON-CONDITIONS AND ERROR HANDLING (C-D)

The ONMSG built-in function takes no arguments. If you wish to type
out the value returned by ONMSG, use the statement

?ONMSG() ;

18.5 LIST OF CONDITION NAMES (C-D)

These are the condition names that may appear in the ON st~tement.

18.5.1 The SUBSCRIPTRANGE Condition (C)

Abbrev: SUBRG for SUBSCRIPTRANGE

Format: SUBSCRIPTRANGE

This condition is raised whenever a subscript is evaluated and found
to lie outside its specified bounds.

18.5.2 The STRINGRANGE Condition (e)

Abbrev: STRG for STRINGRANGE

Format: STRINGRANGE

The STRINGRANGE condition is raised whenever the second and third
arguments to the SUBSTR built-in function or pseudo-variable are out
of range.

Let k = the length of the first argument, let i = the value of the
second argument, and let j = the value of the third argument, if it is
specified, or else let j=k-i+l. Then the STRINGRANGE condition is
raised if any of these inequailities are not satisfied:

1. i <= i <= k+l

2. 0 <= j <= k-i+l

18.5.3 The ZERODIVIDE Condition (C)

Abbrev: ZDIV for ZERODIVIDE

Format: ZERODIVIDE

The ZERODIVIDE condition occurs when an attempt is made to divide by
zero.

18-5

ON-CONDITIONS AND ERROR HANDLING (C-D)

18.~.4 The ENDFILE Condition (C)

Format: ENDFILE (ident)

where "ident" is an identifier which must be declared to be a FILE.

This condition is raised whenever a GET or READ statement fails for
the specified FILE identifier because an end of file is reached.

If the file is not closed after ENDFILE occurs, then any subsequent
GET or READ statement for that file immediately raises the ENDFILE
condition again.

18.5.5 The UNDEFINEDFILE Condition (C~

Abbrev: UNDF for UNDEFINEDFILE

Format: UNDEFINEDFILE (ident)

where "ident" is an identifier which must be declared to be a FILE.

The UNDEFINEOFILE conditlon is raised whenever an attempt to open a
file is unsuccessful for any reason.

Some of the reasons for which the UNDEFINEDFILE condition might be
raised are the following:

1. A conflict in file attributes exists.

2. An input file does not exist.

3. A syntax error occurs in the file-specification given by the
TITLE option of the OPEN statement.

4. An output file cannot be opened because there is no more disk
space.

The UNDEFINEDFILE condition can be raised as the result of either an
explicit open, with the OPEN statement, or an implicit open resulting
from a GET, PUT, READ or WRITE statement.

18.5.6 The RECORD Condition (0)

Format: RECORD (ident)

where "ident" is an identifier which must be declared to be a FILE.

The RECORD condition is raised as a result of a READ operation, in the
following two circumstances:

1. You have specified a READ statement and the next input record
in the file is longer than the INTO character string.

2. You have specified a READ statement with an INTO variable
which is a CHARACTER NONVARYING scalar or array, and the next
input record from the file is shorter than the length of the
CHARACTER string.

18-6

ON-CONDITIONS AND ERROR HANDLING (C-D)

Before CPL raises the RECORD condition, it reads the input record
anyway, and places characters from the record into the INTO variable
storage. In the first of the above two cases, CPL stops storing
characters when the CHARACTER string storage is filled up; however,
CPL still reads to the end of the record. In the second case, the
remaining characters in the INTO variable are left unchanged from
their values before the READ statement was executed.

The statements of the preceding paragraph imply that after the RECORD
condition is raised, it is meaningful for your program to examine the
contents of the INTO variable to determine some information about the
input record.

18.5.7 The ERROR Condition (C)

Format: ERROR

All of the conditions listed above are raised only for specific types
of errors. The ERROR condition can be raised for any type of program
error, including those errors covered by the above named conditions.

Specifically, the ERROR condition can be raised under the following
circumstances:

1. An error occurs, and CPL does not have
ON-condition name for that type of error.

a specific

2. An error occurs, and CPL has a specific ON-condition name for
that type of error, but your program has not established an
ON-unit for that condition name with the ON statement.

18.5.8 The CONDITION Condition (C)

Abbrev: COND for CONDITION

Format: CONDITioN (ident)

This is a programmer-defined condition.
identifier.

"ident" is any

This condition can be raised only by means of the SIGNAL statement.

18.5.9 The ATTENTION Condition (D)

Abbrev: ATTN for ATTENTION

Format: ATTENTION

CPL

This condition is raised when you type a Control-C while your program
is executing.

18-7

ON-CONDITIONS AND ERROR HANDLING (C-D)

CAUTION: If your program establishes an ATTENTION ON-unit, then you
will have lost the ability to stop a looping program by typing
Control-C. This means that you will have to ask the system operator
to stop your program for you.

18.6 THE SIGNAL STATEMENT (COLLECT ONLY) (C)

Format: SIGNAL condition-name

The SIGNAL statement is used to raise an ON-condition artificially.

For example, if your program executes the statement "SIGNAL
ENDFILE(F)i", then CPL will raise the ENDFILE(F) condition, just as if
an end of file had occurred on a GET or READ statement for file F.

If your program has not established an ON-unit for the specified
condition-name, then CPL will type a message of the form "CONDITION
condition-name SIGNALLED" and will continue executing your program
with the statement following the SIGNAL statement.

If your program has an established ON-unit for the specified
condition, then the ON-unit will be invoked. If the ON-unit
terminates normally (that is, the END statement is executed), then
execution continues with the statement following the SIGNAL statement.

18.7 SCOPE OF AN ON-UNIT (D)

The ON statement associates an ON-unit with a specific condition.
Once this association is established, it remains so until one of the
following occurs:

1. It is overridden by another ON statement specifying the same
condition. The overriding ON statement can specify a
different ON-unit, or it can specify the SYSTEM option.

2. The block in which the ON statement was executed is
terminated. When that happens, all ON-units which had been
established before the block was entered, but which had been
overridden inside the block, are automatically reestablished.

3. A REVERT statement, specifying the same condition, is
executed. The REVERT statement is described below.

An established interrupt action (either an ON-unit or a SYSTEM option
for a spe~ified condition) passes from a block to any block that it
activates, and the action remains in force for aLl subsequently
activated blocks, unless it is overidden by the execution of another
ON statement for the same condition. If it is overriden, the new
action remains in formce only until that block is terminated or until
a REVERT statement is executed cancelling the effect of the overriding
ON statement. When control returns to the activating block, all
established interrupt actions that existed at that point are
re-established. This makes if impossible for a subroutine to alter
the interrupt action established for the block that invoked the
subroutine.

18-8

ON-CONDITIONS AND ERROR HANDLING (C-D)

18.8 THE REVERT STATEMENT (DIRECT OR COLLECT) (D)

Format: REVERT condition-name [,condition-name] •••

If you execute a REVERT statement for a specified condition-name, then
any ON statement executed inside the current block invocation, whether
it specifies an ON-unit action or the SYSTEM option, is cancelled.
The action to be taken for the specified condition reverts to what it
was when the current block was first invoked.

18-9

CHAPTER 19

BASED STORAGE AND POINTERS (D)

This chapter deals with a very sophisticated programming concept, and
should be skipped or skimmed on the first reading of the CPL manual.

In a preceding chapter entitled "STORAGE CLASSES," the storage classes
AUTOMATIC, STATIC and CONTROLLED were discussed.

In this chapter, we contrast those three storage classes with the
BASED storage class.

We also introduce a new data type, the POINTER.

Finally, this chapter introduces the ALLOCATE and FREE statement for
BASED storage. (The chapter on "STORAGE CLASSES" gives the format of
these statements for CONTROLLED storage.)

19.1 INTRODUCTION TO BASED STORAGE (D)

Consider the following CPL statement:

A = B + 1.5;

When CPL executes this statement, it automatically knows the following
two things about the variables A and B:

1. The data type of A and B (presumably, in this example, FLOAT)

2. The location of the storage word containing the value of A
and the location of the storage word containing the value of
B.

These two statements are true whether the storage classes of A and B
are AUTOMATIC, STATIC or CONTROLLED.

Even if there are multiple allocations of a variable, as would be the
case, for example, if the storage class was CONTROLLED, then there is
still always a unique "current" allocation and storage address for the
variables.

In the case of BASED storage, however, the above two things are
separated. The BASED variable specifies only the first of these (a
data type) and you must specify the storage address separately.

19-1

BASED STORAGE AND POINTERS (D)

If A anb B had been BASED storage, then the above statement would have
to have been written something like the following:

PI -> A = P2 -> B + 1.5;

this form of statement representation introduces some new concepts.

The operator "->" is called the "pointer qualifier" operator. PI and
P2 would have to be DECLAREd somewhere to be POINTER variables. A
POINTER variable specifies the location of the storage to be used in
an operation.

A BASED identifier itself does not specify any storage. A BASED
identifier specifies only a data type. It may not be used in an
expression unless it is preceded by a POINTER value and the operator
"->".

19.2 DECLARATION OF BASED STORAGE (D)

An identifier is DECLAREd to be BASED as in the following examples:

10. DECLARE IB FIXED BASED;
20. DECLARE (ABl,AB2) FLOAT BASED;
30. DECLARE BB BIT(36) BASED;
40. DECLARE CBV(5) CHAR(20) VAR BASED;

None of the identifiers DECLAREd in the above examples can be used
alone. Each one must be preceded by a POINTER value and the operator
"->" in order to specify the storage location. The BASED identifier
alone cannot specify a storage location.

19.3 POINTER DATA TYPE (D)

Abbrev: PTR for POINTER

The following examples show how a POINTER variable is DECLAREd:

10. DECLARE P POINTER;
20. DECLARE PAC(5) POINTER CONTROLLED;

19.4 THE ADDR BUILT-IN FUNCTION (D)

The ADDR built-in function is the main tool which you will use to
obtain POINTER values. ADDR takes one argument, an identifier or a
subscripted identifier, and it returns the "address" of that argument.

For example, if P is a POINTER variable, and you execute the statement

P = ADDR(J) ;

then P will be set to the address of the identifier J. That is, P
will "point" to the storage location occupied by the variable J.

19-2

BASED STORAGE AND POINTERS (D)

IMPLEMENTATION NOTE

ADDR does not return the "address" in
the usual sense. A CPL POINTER value
consists of a DECsystem-lO/20 word
address and a bit displacement within
that 36-bit word. This means that a
POINTER can point to any CPL data item,
whether it be a full word or a character
or bit within a word.

19.5 USE OF POINTERS AND BASED STORAGE (D)

Consider the following short program:

10. DECLARE P POINTER;
20. DECLARE IB BASED;
30. P = ADDR(J);
40. J = 10;
50. PUT LIST(P -> IB);
60. P->IB = 20;
70. PUT LIST(J);

Statement 30 sets P to the address of J, and statement 40 sets J to
10.

Statement 50 uses the "->" operator with a POINTER P and a BASED
variable lB. Since P points to J, the reference to P->IB is the same
as a. reference to J. Therefore, statement 50 types out the value 10.

Statement 60, by the same reasoning, sets J to 20. Thus statement 60
will set J to 20. Thus, statement 70 will type out the value 20.

19.6 ADDITIONAL 'EXAMPLES (D)

19.6.1 Two POINTERs With Same BASED Variable (D)

Here is an example of a short program which uses two POINTERs with the
same BASED variable.

10. DECLARE (P,Q) POINTER;
20. DECLARE IB BASED;
30. P = ADDR (I) ;
40. Q = ADDR(J);
50. P -> IB =5 /*SAME AS 1=5 */;
60. Q->IB=P->IB+Q->IB /*SAME AS J=I+J*/;

In this example, there are two POINTERs, P and Q. Both of these
POINTERs are used to qualify the same BASED identifier, lB. When P
qualifies IB, the result is a reference to I; when Q qualifies IB,
the result is a reference to J.

19-3

BASED STORAGE AND POINTERS (D)

19.6.2 BASED CHARACTER Strings (D)

A POINTER variable may point to a character string, or to a particular
character in a character string or character string array.

For example, consider the following short program:

10. DECLARE P POINTER;
20. DECLARE CA(5) CHAR (2) ;
30. DECLARE CB CHAR(3) BASED;
40. STRING(CA) = 'ABCDEFGHIJ ' ;
50. P = ADDR (CA) ;
60. PUT LIST(P->CB) /* RESULT IS 'ABC' */;
70. P = ADDR (A (3)) ;
80. PUT LIST(P->CB) /* RESULT IS 'EFG ' */;
90. P = ADDR(CA(4»;

100. PUT LIST(P->CB) /* RESULT IS 'GHI' */;

Statement 40 of this program uses the STRING pseudo-variable, which is
described in the chapter on Built-in Functions and Pseudo-variables.
This particular statement sets CA(l) to 'AB', CA(2) to lCD', CA(3) to
I EF I, CA (4) to I GH I, and CA (5) to I IJ I •

CPL stores the characters of NONVARYING CHARACTER arrays one after the
other in core storage. That is, the two characters in CA(2) directly
follow the characters in CA(l) in core.

This means that if P is set to ADDR(CA), as in statement 50, and if P
is used to qualify a CHAR(3) BASED string in the program, then th~
result will be the first three characters ('ABC ') in the aggregate
array.

Simlarly, when P points to CA(3), then P->CB refers to the two
characters in CA(3) and to the first character in CA(4).

Note that this method will not work for CHARACTER VARYING arrays. The
method fails because for ,character VARYING, CPL places before each
element of the array a word containing the current length of that
element of the array. Therefore, the characters in one element of the
array are not directly adjacent to the characters in the next element.

19.6.3 BASED BIT Arrays (D)

The same technique can be used with BIT NONVARYING arrays.

If P is set to the address of a BIT in the string, then if P qualifies
a BASED BIT string, you can refer to bits in adjacent elements of the
array.

19.6.4 Mixing Data Types (D)

It is possible to let P point to data of one data type, and then use P
to qualify a BASED variable of a different data type.

19-4

BASED STORAGE AND POINTERS (D)

This type of operation is always machine dependent, since the results
depend upon the particular internal bit format of the data on the
particular machine.

For example, here is a program which types out the characters 'ABCD'
in BIT (7) format:

10. DECLARE P POINTER;
20. DECLARE CA(4) CHAR{l);
30. STRING (CA) = 'ABCD';
40. DECLARE BB BIT(7) BASED;
50. DO I = 1 TO 4;
60. P = ADDR {CA (I)) ;
70. PUT LIST{P->BB);
80. END;

In this program, statement 30 uses the STRING pseudo-variable to set
the four CHAR{l) elements of the CA array to 'A', 'B', 'C' and 'D',
respectively.

Statement 60 sets P to the address of CA{I), and statement 70 types
out that character in BIT(7) format. Therefore, this program will
produce the following output:

'lOOOOOl'B 'lOOOOlO'B 'lOOOOll'B 'lOOOlOO'B

These are the representations of the first four characters in ASCII
BIT(7) format.

19.7 COMPARISON OF POINTERS (D)

You may wish to compare two POINTER variables, for example as a test
in an IF statement or in the WHILE option of the DO statement.

You may use the operators "=" and "A=" to compare two POINTER values
for equality or inequality, respectively.

The other comparison operators (e.g., greater than) may not be used to
compare POINTER values.

For example, in the statement

IF Pl=P2 THEN GO TO XYZ;

where Pl and P2 are POINTERs, control will transfer to XYZ if Pl and
P2 point to the same data item (word or character or bit).

IMPLEMENTATION NOTE

For Pl and P2 to be considered equal,
they must point to data at the same word
address and same bit displacement within
the word.

19-5

BASED STORAGE AND POINTERS (D)

19.8 BASED ARRAYS (D)

An array may have the BASED storage class attribute.
examples of such arrays.

19.8.1 Example Of BASED Array (D)

Here are some

Here is a program segment which uses a BASED array called BARR:

10. DECLARE P POINTER;
20. DECLARE BARR(2) BASED;
30. DECLARE A (SO) ;

120. P = ADDR (A) ;
130. X = P -> BARR(l) /* SAME AS X=A (1) */;
140. Y = P -> BARR(2) /* SAME AS Y=A (2) */;

240. P = AD DR (A (15)) ;
250. X P -> BARR(l) /* SAME AS X=A(lS) */;
260. Y P -> BARR(2) /* SAME AS Y=A(16) */;

Statement 20 DECLAREs a BASED array BARR. Statement 120 sets the
POINTER P to the address of the array A. Thus, a reference to the
array P->BARR is a reference to the array consisting of the first two
elements of the array A. Therefore, P->BARR(l) in statement 130
refers to A(l), and P->BARR(2) in statement 140 refers to A(2).

Statement 240 shows a different kind of example. P is set to point to
A(lS), the lS'th element of the array A. Therefore, a reference to
the array P->BARR is now a reference to the array consisting of the
two elements A(15) and A(16). Therefore, P->BARR(l) refers to A(lS)
in statement 250, and P->BARR(2) refers to A(16) in statement 260.

19.8.2 Example Of BASED CHARACTER Array (D)

By using BASED CHARACTER arrays, it is possible to treat a string of
characters as a scalar character string in one context and as an array
in another context.

Consider the following program segment:

10. DECLARE S CHAR(4);
20. DECLARE SB(4) CHAR(l);
30. DECLARE P POINTER;
40. P = ADDR(S);
50. S = 'ABCD';
60. PUT LIST(P->SB(l» /* RESULT IS 'A' */;
70. PUT LIST(P->SB(3» /* RESULT IS 'C' */;

Statement 40 sets P to point to the character string S, which
statement 50 sets to 'ABCD'.

Thus, a reference to P->SB is a reference to an array consisting of
the four characters in the scalar string S. Therefore, P->SB(l) has
the value 'AI in statement 60, and P->SB(3) refers to 'C' in statement
70.

19-6

BASED STORAGE AND POINTERS (D)

19.9 THE ADDR AND NULL BUILT-IN FUNCTIONS (D)

The AD DR built-in function was defined in a previous section. This
section gives more information and examples of this function, and
introduces a new built-in function, NULL.

19.9.1 The NULL Built-in Function (D)

The NULL built-in function takes no arguments. It returns a "null"
POINTER value.

When a POINTER variable is allocated, it does not point to any data
and is said to be a "null" POINTER value.

If you wish to set a POINTER to an explicit null value, then you may
use a statement like

P = NULL ()

to set the POINTER P to a null value.

Another use for the NULL built-in function is to compare with a
POINTER variable to see whether the variable has a non-null value.
The list processing example at the end of this chapter shows some
examples of this use of the NULL built-in function.

19.9.2 Use Of ADDR As POINTER Qualifier (D)

The ADDR built-in function can be used directly as a POINTER qualifier
of a BASED variable without going through an intermediate POINTER
variable. For example, consider the following program segment:

10. DECLARE S(4) CHAR(l);
20. DECLARE BB BIT(7) BASED;

140. PUT LIST(ADDR(S(3)) -) BB);

Statement 140 uses the POINTER value ADDR(S(3)) directly as a POINTER
qualifier for the BASED identifier BB. Thus, this statement will type
out the character S(3) in BIT(7) format.

19.9.3 Use Of ADDR To "Increment" A POINTER (D)

It is illegal to perform ordinary arithmetic operations on a POINTER
variable. (For example, if P is a POINTER, then you may not compute
P+l to, say, increase the address in P by 1 word.)

However, you may use the ADDR built-in function with a BASED argument
to "increment" a POINTER variable to point to the next word or
character or bit.

19-7

BASED STORAGE AND POINTERS (D)

Here is an example of the technique that is used:

10. DECLARE P POINTER;
20. DECLARE S CHAR(lOO};
25. DECLARE SBA(2} CHAR(l} BASED;
30 . P = ADDR (S) ;
40. DO I = 2 TO 100;
50. P = ADDR(P -> SBA(2} };

120. END;

Statement 30 sets P to point to the first character in the string S.
Each time through the loop, statement 50 "increments" the pointer P to
point to the next character in the string. Therefore, P will point in
turn to the 2'nd through 100'th characters of the string S.

19.10 POINTERS WITH DO STATEMENTS (D)

There are two special topics to discuss under this general heading:

1. Use of a POINTER-qualified BASED DO-loop variable

2. DO-variable with POINTER data type

These topics are discussed below.

19.10.1 POINTER-qualified BASED DO-loop Variable (D)

A DO-loop variable can be BASED, with a POINTER-qualifier.
for example, the following DO-group:

10. DECLARE P POINTER, IB BASED;

100. P = ADDR(J};
110. DO P ->IB = 1 TO 10;

150. END;

In this simple example, statement 110 is equivalent to

DO J = 1 to 10;

since P points to the variable J.

Consider,

Note the following: If you change the value of P inside the DO group,
you will not change the location of the DO variable. Once the
location of a DO variable has been established, it cannot be changed
for the duration of the DO loop.

19-8

BASED STORAGE AND POINTERS (D)

19.10.2 DO Variable With POINTER Data Type (D)

The DO variable may have the POINTER data type. In this case, the TO
and BY clauses are illegal, but the REPEAT and WHILE clauses are
legal.

19.10.2.1 Simple Example (D) - Here is a simple example illustrating
the use of a POINTER DO-variable:

10. DECLARE P POINTER, IBBASED:

110. DO P = ADDR(I), ADDR(J), ADDR(K):
120. PUT LIST(P->IB);
130. END;

The DO loop will be iterated three times, with P pointing to I, J and
K, respectively, during each iteration. Therefore, statement 120 will
type the value of I the first time through the loop, the value of J
the second time, and the value of K the third time.

19.10.2.2 Example With REPEAT Clause (0) - Here is an example of a
POINTER DO variable. An example was given a page or two back in the
sub-section entitled "Use of AODR to "Increment" a POINTER." In that
example, the POINTER variable was "incremented" as the first statement
of the DO loop so that it pointed to successive characters in the
string S, starting with the 2'nd and continuing to the 100'th.

The following example is a variation of that example. The DO-loop
variable is initialized to point to the first character in the array
for the first iteration of the loop. (This is a difference with the
last example -- there the POINTER pointed to the second character for
the first iteration.) The REPEAT clause "increments" the DO variable
by one character.

10. DECLARE P POINTER;
20. DECLARE S CHAR(lOO);
25. DECLARE SBA(2) CHAR(l) BASED;
30. P = ADDR(S);
40. DO P ADDR(S) REPEAT(ADDR(P->SBA(2)))

WHILE (P->SBA(l) A= 'Z');

120. END;

This example is similar to the one referenced above, but the
"incrementing" is done in the REPEAT clause rather than in a separate
statement. The WHILE clause specifies that the loop is to be
terminated as soon as P points to the character 'Z'.

19-9

BASED STORAGE AND POINTERS (D)

19.11 POINTERS WITH PROCEDURES (D)

There are three special topics to discuss under this general heading:

1. PROCEDURE invocations with BASED arguments
non-dummy)

2. PROCEDURE invocations with POINTER arguments

(dummy

3. Function PROCEDURE invocations with RETURNS(POINTER)

These topics are discussed below.

19.11.1 PROCEDURE Invocations With BASED Arguments (D)

and

You may invoke a PROCEDURE, either by means of a CALL statement or by
a function reference, and you may pass a BASED argument. Consider the
following program segment:

10.
20.
30.
40.
50.

250.

300.

PR:

DECLARE P POINTER, IB BASED;
J = 5;
P = ADDR (J) ;
CALL PRe P->IB };
CALL PRe (P->IB) };

PROCEDURE (IARG) ;

END PRj

Statement 40 calls PR passing the real argument P->IB. Since P has
been set to the address of J, this statement is equivalent to "CALL
PR(J);" Statement 40 could also have been written:

CALL PRe ADDR(J)->IB);

In this form, the intermediate POINTER variable P would not have been
needed at all.

If PROCEDURE PR changes the value of its argument, IARG, inside the
PROCEDURE, then the value of J will automatically change.

Statement 50 is similar to statement 40, except that the extra set of
parentheses causes a dummy argument to be created. In this case, if
the PROCEDURE PR changes the value of IARG, then the dummy will change
but J will not.

19.11.2 PROCEDURE Invocations With POINTER Arguments (D)

You may invoke a PROCEDURE, either by means of a CALL statement or by
means of a function invocation, passing a POINTER argument.

Here is an example of a subroutine which is passed a POINTER, and
which types out the value of the bit pointed to by the POINTER:

19-10

BASED STORAGE AND POINTERS (D)

10. DECLARE P POINTER;

110. CALL TYPEBIT(P};
120. CALL TYPEBIT(ADDR(J}};

720. TYPEBIT: PROCEDURE (PTR) ;
730. DECLARE PTR POINTER;
740. DECLARE BB BASED BIT(l} ;
750. PUT LIST(PTR->BB};
760. END TYPEBIT;

Note that if you pass PROCEDURE TYPEBIT a POINTER argument, then the
parameter must be DECLAREd to be a POINTER (as in statement 730 of the
above example). Statement 750 takes the POINTER parameter and uses it
to qualify a BASED identifier BB. Statements 110 and 120 call
TYPEBIT, passing P and ADDR(J} as arguments, respectively.

The rules for dummy and real arguments are the same for POINTERs as
for other data types. If you enclose the argument in an extra set of
parentheses, then a dummy POINTER argument is created.

19.11.3 Function PROCEDURE Invocations With RETURNS(POINTER} (D)

You may use the RETURNS (POINTER) option of the PROCEDURE statement to
specify that a function PROCEDURE is to return a POINTER value. A
reference to such a function may be assigned to a POINTER variable by
means of an assignment statement, or it may be used directly to
qualify a BASED variable. Both of these uses are illustrated in the
example below.

In this example, INCR is a PROCEDURE function which "increments" a
POINTER argument by one character. It takes a POINTER argument and
returns a POINTER value pointing one character beyond.

10.
20.
30.
40.
50.
60.
70.
80.
90.

620.
630.
640.
640.
650.

INCR:

DECLARE P POINTER;
DECLARE S CHAR(5};
DECLARE CB CHAR(l} BASED;
S = 'ABCDE';
PUT LIST(ADDR(S} -> CB} /* RESULT IS 'A' */;
P = INCR(ADDR(S}};
PUT LIST(P->CB} /* RESULT IS 'B' */;
PUT LIST(INCR(P}->CB } /* RESULT IS 'C' */;
PUT LIST(INCR(INCR(P}}->CB } /* RESULT IS 'D' */;

PROCEDURE (PP) RETURNS (POINTER);
DECLARE PP POINTER;
DECLARE CBA(2} CHAR(l} BASED;
RETURN (ADDR(PP->CBA(2}});
END INCR;

Study the example carefully to see how references to the INCR function
are used in statements 60 through 90. Note statement 90 in
particular, where INCR is called twice to increment the POINTER
argument twice.

19-11

BASED STORAGE AND POINTERS (D)

19.12 BASED AND DIMENSIONED POINTERS (D)

A POINTER variable may be dimensioned, BASED, or both. A BASED
POINTER qualifier may itself be qualified by another POINTER. For
example, if your program contains the following DECLARE statements:

10. DECLARE P POINTER;
20. DECLARE PBA(S) POINTER BASED;

then your program may later contain a construct which looks something
like the following:

P -) PBA(I) -) IB;

19.13 OTHER PLACES WHERE BASED VARIABLES ARE USED (D)

Generally, CPL permits a POINTER-qualifier BASED variable wherever it
permits a variable. For example, your program might contain the
following kinds of statements:

PUT STRING(P-)SB) LIST(X,y);

UNSPEC(P->IB)='lOOl'B;

READ FILE(F) INTO(P->CB);

As these statements illustrate, a POINTER-qualified BASED variable can
be used in the STRING option, as a pseudo-variable argument, and in
the FROM or INTO option of the READ or WRITE statements.

19.14 VARIABLES IN BASED DECLARATIONS (D)

Extent expressions (string lengths and array bounds) in the
declarations of BASED variables may contain variables. In that case,
CPL will recompute the values of extent expressions each time that the
BASED variable is referenced.

For example, if you have the declaration:

DECLARE IAB(N,M+K) BASED;

in your program, and if you later reference

P->IAB(1,J)

in a statement, then CPL will compare the subscript values (I and J)
with the array bounds (N and M+K) determined by the current values of
N, M and K.

19-12

BASED STORAGE AND POINTERS (D)

19.15 THE ALLOCATE STATEMENT (DIRECT OR COLLECT) (D)

Format: ALLOCATE ident [SET(pointer)];
or ALLOCATE ident [SET(PTR)] ,IDENT [SET(PTR)] ••• ;

Abbrev: ALLOC for ALLOCATE

The "ident" must have the CONTROLLED attribut (in which case the SET
option may not be specified) or the BASED attribute (in which case the
SET option must be specified). If the SET option is specified, it is
followed in parentheses by a POINTER variable.

We have previously discussed the ALLOCATE statement for CONTROLLED
storage only. We now give the general format, including the format
for BASED storage.

19.15.1 ALLOCATE For CONTROLLED Storage (D)

If the "ident" has the CONTROLLED attribute, then the SET option may
not be used ..

CPL allocates storage for the specified identifier. If storage has
already been allocated, then CPL allocates an additional copy.

If there are several allocations of a CONTROLLED variable in
existence, then any statement which references the CONTROLLED variable
will reference the most recent allocation of it.

See chapter entitled "Storage Classes" for an example of the ALLOCATE
statement for CONTROLLED storage.

19.15.2 ALLOCATE For BASED Storage (D)

If the "ident" has the BASED attribute, then the SET option must be
used. The "pointer" is a reference to a POINTER variable.

CPL allocates storage for the BASED variable, and sets the specified
POINTER variable to point to it.

This type of storage allocation is different from other types in the
following sense: You can only reference this storage by means of the
POINTER variable. If your program "loses trac" of the value of the
POINTER variable (for example, the POINTER variable is immediately
assigned a different value), then the storage block is lost to your
program completely, and there is no way to reference it again.

Examples of the ALLOCATE statement for BASED storage are given in the
next chapter.

19.16 THE FREE STATEMENT (DIRECT OR COLLECT) (D)

Format: FREE [pointer ->] ident
or FREE [pointer ->] ident, [pointer->]ident

19-13

BASED STORAGE AND POINTERS (D)

The "ident" must have the CONTROLLED attribute or the BASED attribute.
The pointer qualifier must be used with a BASED identifier, and may
not be used with a CONTROLLED identifier.

19.16.1 FREE For CONTROLLED Storage (D)

If the identifier has the CONTROLLED attribute, then there must exist
at least one allocation of the specified identifier. CPL releases the
storage occupied by the most recent allocation.

See the chapter entitled "Storage Classes" for an example of the FREE
statement for CONTROLLED storage.

19.16.2 FREE For BASED Storage (D)

If the identifier has the BASED attribute, then a
must be specified. The storage block pointed
qualifier is freed.

POINTER qualifier
to by the POINTER

CPL imposes the following rule on this operation: The storage block
being freed must be precisely a storage block which was allocated by a
BASED ALLOCATE statement. No partial blocks may be freed. Therefore,
the POINTER qualifier must point to the beginning of a storage block,
and the size of the BASED variable must be identical to the size of
the storage block.

Examples of the FREE statement for BASED storage are given in the next
chapter.

19.17 RESTRICTIONS ON BASED STORAGE (D)

In order to guarantee the integrity of the CPL system, CPL imposes
some restrictions on the use of BASED variables and POINTERs.

CPL will not permit you to use a POINTER to reference storage which is
not inside a legitimate data area. This means that a POINTER variable
can never point anywhere but to the inside of such a block. This
means the following:

1. If you try to change the value of a POINTER by means of the
UNSPEC pseudo-variable, you will not change the value of the
POINTER.

2. If you try to "increment" a POINTER beyond the end of a data
block, you will not be permitted to.

3. If a pointer-qualifier points to a data block which is too
small for the the BASED variable being qualified, then CPL
will consider the reference to be illegal.

Furthermore, as discussed above with the FREE statement, you must FREE
a BASED storage block exactly as it was allocated by a BASED ALLOCATE
statement.

19-14

CHAPTER 20

A LIST PROCESSING EXAMPLE (D)

This chapter gives a detailed example of BASED storage and POINTERs.
This chapter depends heavily on the preceding chapter, and so may be
skipped or skimmed on first reading.

20.1 DESCRIPTION OF APPLICATION (D)

~he program we will describe is a simple accounting program. It reads
data containing information about individuals, including name,
address, salary and age, and performs the following processing:

1. Creates a "record" of the data in BASED storage

2. Sorts these ~records" in alphabetical order by name

3. Prints out the sorted list.

We will not present the entire program which does all this; rather,
we will give the crucial coding segments which perform the functions
which are most important in an illustration of BASED storage and
POINTERs.

20.2 THE BASIC DECLARATIONS (D)

The following declarations will be used throughout the example:

10. DECLARE PBASE POINTER;
20. DECLARE PAB(3) POINTER BASED;
30. DECLARE CAB(3} CHAR(20} VAR BASED;
40. DECLARE lAB(2) FIXED BASED;
50. DECLARE P POINTER;

As discussed above, we will need a "record" for each individual for
whom we read a data card.

Each such "record" will actually consist of three BASED allocations,
one for each of the BASED arrays PAB, CAB and lAB. These three BASED
storage blocks will form a single "record" in the following manner:

20-1

A LIST PROCESSING EXAMPLE (D)

1. PAS is a three-element POINTER array. The three elements in
each allocation point to the following:

1. The next "record" in alphabetical order (i. e. , the
address of the PAB block for the next "record")

2. The CAB block for the current record

3. The lAB block for the current record

2. CAB is a three-element CHARACTER array. It will contain the
name, address and city of the person described by the current
"record."

3. lAB is a two-element FIXED array. It will contain the salary
and age of the person described by the current record.

It is through the use of the three POINTERs in the PAB array that the
three components of the "record" can be considered as a single unit.

(Note: Other implementations of PLII permit the use to declare a
"structure" containing several different data types; with such an
implementation, you would be able to combine PAB, CAB and lAB into a
single BASED "structure." However, since CPL does not permit such
declarations, this example uses three different declarations, one for
each data type in the "record.")

The POINTER variable PBASE will point to the first PAB block, and each
PAB(l} will point to the next PAB block. The last PAB(l) will have a
"null" POINTER value.

20.3 INITIALIZING THE RECORD CHAIN (D)

In order to make processing easier, we will begin by allocating two
dummy "records." These dummy records will contain the names
"AAAAAAAAAAAAAAAAAAAA" and "ZZZZZZZZZZZZZZZZZZZZ", respectively.
Later we will be adding records to the chain in alphabetical order,
and we will always be able to assume that each new record will be
inserted somewhere in the middle of the chain, never at the beginning
or end of the chain.

We create the first dummy record as follows:

60. ALLOCATE PAB SET(PBASE} i
70. ALLOCATE CAB SET(P} i
80. P->CAB(l} = (20) 'A';
90. PBASE->PAB(2} = Pi

100. ALLOCATE lAB SET(P};
110. PBASE->PAB(3} = P;

The preceding six statements perform the following steps:

1. Statement 60 allocates the first PAB block, and sets PBASE to
point to it.

20-2

A LIST PROCESSING EXAMPLE (D)

2. Statement 70 allocates the first CAB block, and sets the
pointer P to point to the new block. Statement 80 sets the
name field to 'AAAAAAAAAAAAAAAAAAAA'.

3. Statement 90 causes PAB(2) to point to the new CAB block.

4. Statement 100 allocates the first lAB block, and causes
PAB(3) to point to it.

We now allocate the dummy record which will terminate the chain. In
the following code we take some shortcuts we didn't take in the above
code.

120. ALLOCATE PAB SET(P) i
130. PBASE->PAB(l) = Pi
140. ALLOCATE CAB SET(P->PAB(2));
150. P->PAB(2)->CAB(1)=(20) 'Z'i
160. ALLOCATE lAB SET(P->PAB(3));
170. P->PAB (1) =NULL () ;

This sequence of code is not too different from the last sequence.
But note that the ALLOCATE statements in lines 140 and 160 use a SET
option which directly assigns the desired POINTER field, rather than
going through an intermediate POINTER variable. In fact, lines 120,
140 and 160 could have all been replaced with a single ALLOCATE
statement:

ALLOCATE PAB SET(P), CAB SET(P->PAB(2)),
lAB SET(P->PAB(3)) i

20.4 PROCEDURE TO ADD A "RECORD" TO THE CHAIN (D)

After all the above code has been executed, the current chain will
consist of the two dummy records.

Now we present a PROCEDURE which can be called to add the next record
to the chain. It will insert the chain into the proper place in
alphabetical order.

700. ADDNAM: PROC(NAME,STREET,CITY,SALARY,AGE) RETURNS (PTR) ;
710. DECLARE (NAME,STREET,CITY) CHAR(20) VAR;
720. DECLARE (SALARY, AGE) FIXED; /*DECLARE PARMS*/
730. DECLARE (P,PNEW,PPREV) POINTER:
740. DO P=PBASE REPEAT(P->PAB{l))

WHILE (P->PAB(2)->CAB(1) < NAME):
750. PPREV = Pi
760. END;
770. ALLOCATE PAB SET (PNEW), CAB SET(PNEW->PAB{2)),

lAB SET(NEW->PAB{3));
780. PNEW->PAB(2)->CAB(1) = NAME;
790. PNEW->PAB(2)->CAB(2) STREET;
800. PNEW->PAB(2)->CAB(3) = CITY;
810. PNEW->PAB(3)->IAB(1) = SALARY;
820. PNEW->PAB(3)->IAB{2) = AGE;
830. PPREV->PAB(l) = PNEW:
840. PNEW->PAB(l) = P;
850. END ADDNAM;

20-3

A LIST PROCESSING EXAMPLE (D)

Here is what this PROCEDURE does:

1. The arguments to the PROCEDURE pass all the information
needed to create the new data record. (We assume that some
preceding code read the data from a file and called this
procedure with the proper arguments. We also assume that
that code did some checking to see that the name contained
legal characters.)

2. Statements 710 and 720 declare the parameters to have the
correct attributes.

3. Line 730 declares three POINTER variables to be used locally
inside this PROCEDURE.

4. Lines 740 through 760 search through the existing chain for
the correct position of the new name (in alphabetical order).
When this loop is completed, the new record will belong
between the records pointed to by PPREV and P.

5. Line 770 allocates all the components of the new record, and
lines 780 through 820 fill in all the fields with the values
passed in the parameters to the PROCEDURE.

6. Lines 830 and 840 place the new record into the chain between
PPREV and P.

20.5 LISTING THE CHAIN (D)

As a final piece of code, we show how a PROCEDURE can be called to
list out all the names in the chain.

This PROCEDURE also shows how simple the REPEAT clause of the DO makes
the process of following a linked chain.

900. LISTNAMES: PROCEDURE;
910. DECLARE P POINTER;
920. DO P = PBASE->PAB(l) REPEAT(P->PAB(l)

WHILE (P->PAB(l)A=NULL(»;
930. PUT SKIP LIST(P->PAB(2)->CAB(1»;
940. END;
950. END LISTNAMES;

Line 920 incorporates into a single DO statement all the logic that is
needed to loop through the entire chain, skipping the first dummy
record and stopping at the last dummy record.

Line 930 types out the name in the record pointed to by P. Additional
statements could be added to type out the other fields in the record.

20.6 A FINAL EXERCISE (D)

If you would like to practice with the example given above, then you
may wish to try the following exercise:

20-4

A LIST PROCESSING EXAMPLE (D)

Add a subroutine which does a simple bubble or interchange sort on the
list by salary, and print out the list in increasing order by salary.
Do this in the following manner: Change the declaration of PAB so
that there is a fourth element, PAB(4). Invoke your PROCEDURE after
the entire chain has been set up in alphabetical order, and then
perform the sort so that the same chain is sorted in order by
increasing order by salary through the PAB(4) field. That is, for
each record, while PAB(l) continue to point to the next one in
alphabetical order, PAB(4) will point to the next record in order of
increasing salary.

20-5

CHAPTER 21

OTHER STATEMENTS (B)

21.1 THE NULL STATEMENT (DIRECT OR COLLECT) (B)

Format:

This statement gives the PL/I language that aesthetically satisfying
feeling of mathematical completeness that only a null statement can
provide.

This statement takes no action.

EXAMPLE: IF A>B THEN; ELSE GO TO XYZ;

If A>B then no action is taken;
statement with label XYZ.

otherwise, control passes to the

EXAMPLE: /* THIS IS A COMMENT */;

Comments may appear in any CPL statement. Sometimes, however, you may
wish a comment to appear alone on a single line. When this happens,
the statement is really a null statement.

21.2 THE STOP STATEMENT (DIRECT OR COLLECT) (B)

Format: STOP;

CPL will halt execution and return to command level.

21.3 THE DELAY STATEMENT (DIRECT OR COLLECT) (B)

Format: DELAY(expression) ;

CPL evaluates the "expression" and converts it to FIXED, if necessary,
to obtain an integer value, n. CPL interprets n to be a number of
milliseconds (thousandths of a second). CPL goes to sleep for the
specified number of milliseconds.

WARNING: DELAY is not in the ANSI PL/I standard, and so may not be
available in other PL/I implementations.

EXAMPLE: DELAY(2000); causes CPL to go to sleep for 2 seconds.

21-1

CHAPTER 22

STRUCTURED AND GOTO-LESS PROGRAMMING (C)

During the last few years, new programming techniques have been
developed to make programming faster and easier and to make programs
more reliable and easier to maintain and modify.

These techniques are usually given the name "structured programming,"
although that phrase has been given different meanings by different
authors. In this section, we give a set of structured programming
rules for CPL, including a modified rule for GOTO-less programming.

22.1 TRADITIONAL PROGRAMMING WITH GOTOs (C)

Many people feel that sloppy use of the GOTO statement is the greatest
factor in making programs difficult to maintain and modify. If you
have ever had the job of trying to figure out a program which had been
written and modified by several people, you will probably agree. It
is almost impossible to trace logic when a program has GOTOs which
jump back and forth allover the place.

22.2 STRUCTURED LOOPS (C)

All program loops must be done by DO statement loops. You may never
program a loop by means of a statement of the form IF ••• THEN GOTO ••••

The use of DO statements for program loops has been the subject of
~his chapter.

22.3 TESTING CASES (C)

Many programs have statement groups of the following type:

IF A=l THEN GO TO Ll;
ELSE IF A=2 THEN GO TO L2;
ELSE IF A=lO THEN GO TO L3;
ELSE GO TO L4;

There are four GOTO statements in this group. They specify transfers
to statements which are remote from the tests and which may appear
anywhere in the program -- near the beginning of the program, or near
the end.

22-1

STRUCTURED AND GOTO-LESS PROGRAMMING (C)

The same types of tests can be made in a structured in the following
manner:

IF A=l THEN DO:

END;
ELSE IF A=2 THEN DO;

END;
ELSE IF A=lO THEN DO;

END;
ELSE DO;

END;

When you are trying to understand code written in this manner, you can
easily see what code goes with what test. You always know what block
of code goes with each test, and you always know that there is only
one way to get to each block of code.

22.4 RESTRICTIONS ON GO TO STATEMENTS (C)

Some practitioners of structured programming claim that the GOTO
statement should not be used at all.

This writer has experimented with GOTO-less programming techniques and
concluded that a restricted GOTO rule makes programs easier to write,
modify and maintain.

What is needed is a construct known as a "LEAVE" statement in other
languages. This contruct permits you to terminate a loop early, and
to transfer to the statement following the end of the loop.

In terms of CPL, this means that the GOTO statement may be used only
in the following circumstances:

1. A GOTO statement may specify only a forward transfer; you
may never move backwards in your program except by means of a
DO loop.

2. A GOTO statement may transfer to the statement following the
END statement of a DO loop in which the GOTO statement lies.

Here is an illustration of this type of GOTO statement:

DO I = 1 TO 100;

IF A>B THEN GO TO E3;

END;
E3:

In this example, the test "A>B" is used to determine whether the
loop should be terminated abnormally, by transferring to the first
statement following the END statement.

22-2

STRUCTURED AND GOTO-LESS PROGRAMMING (C)

22.5 USE OF GOTO WITH ON-UNITS (C)

Since most ON-units must terminate with a GOTO statement, it is
necessary to use a GOTO statement with error control logic.

This is not usually a serious problem, since there are usually few
ON-units in a program.

Nonetheless, the programmer should follow the rule that an ON-unit may
only cause a transfer in the forward direction.

22.6 MODULARITY (C)

An important facet of well-structured programs is modularity.

Suppose you are writing a program of several hundred statements. Such
a program will usually be very difficult to understand because, for
example, there will be DO loops where the END statement is far from
the DO statement. Understanding the loop strucutre of a program is
essential to understanding the program.

For this reason, you should take large blocks of code and place them
into separate PROCEDUREs. You should strive to make the main program,
and each of the PROCEDUREs, no more than 100 statements long • .
For more information on the use of PROCEDUREs, please see the chanpter
on "Subroutine and Function PROCEDUREs."

22-3

CHAPTER 23

BUILT-IN FUNCTIONS AND PSEUDO-VARIABLES (B-D,R)

23.1 WHAT ARE BUILT-IN FUNCTIONS? (B)

Certain identifiers have special meaning when used in expressions.
These identifiers can be used to specify that certain special
functions are to be invoked. When used in this way, these identifiers
are called "built-in functions."

For example, in the statement

B = LOG (X) ;

the reference to "LOG(X)" causes CPL to compute the natural logarithm
of the current value of X and assign its value to B.

Some functions take more than one argument. For example, the
reference to SUBSTR('ABCDEF',3,2) returns the character string 'CD'.
(This is the substring of 'ABCDEF' starting from the third character
and continuing for 2 characters.)

23.2 HOW BUILT-IN FUNCTIONS ARE RECOGNIZED (B)

Consider the identifier LOG. If there is no declaration for LOG, then
it will normally be an ordinary FIXED variable. However, in the
absence of any array declaration, a reference to LOG (X) is illegal due
to the appearance of the argument, X. When CPL detects such an
illegal reference, it checks to see whether LOG is in its list of
special built-in functions. If so, then the illegal array reference
is interpreted as a legal built-in function reference.

Once LOG has been used as a built-in function in this manner, it may
never again be used as a variable without a declaration.

If you wish, for purposes of program clarity, to specify that LOG is a
built-in function, then you may insert the declaration:

DECLARE LOG BUILTIN;

23-1

BUILT-IN FUNCTIONS AND PSEUDO-VARIABLES (B-D,R)

23.3 BUILT-IN FUNCTIONS WITH NO ARGUMENTS (C)

The DATE built-in function takes no arguments, and it returns a
character string of length 6 (CHAR(6» containing the date in the
format yymmdd, where yy=the last two digits of the year, mm=the number
of the month, and dd=the day of the month. '

Functions such as DATE which take no arguments present special
recognition problems. In the statement "A=DATE;", CPL has no way of
determining whether the programmer intended that the variable or the
built-in function DATE be used.

CPL makes the following convention: A simple reference to "DATE" will
be interpreted as a reference to the variable "DATE." To refer to the
built-in function DATE, you must do one of two things:

1. Refer to "DATE ()". The parent'heses with no argument list
signal a reference to the built-in function DATE.

2. Use an explicit declaration,

DECLARE DATE BUILTIN;

If this declaration appears, then any reference to DATE will
be interpreted as a reference to the built-in function.

23.4 WHAT IS A PSEUDO-VARIABLE? (C)

Certain built-in functions may appear to the left of an equal sign in
an assignment statement. When they appear in such contexts, these
built-in functions are called "pseudo-variables".

Here is an example of the use of SUBSTR as an pseudo-variable:
DECLARE C CHAR(8);
C='ABCDEFGH'i
SUBSTR(C,3,2) = 'XY'i

After the last sta·tement has executed, the val ue of C will be
'ABXYEFGH' .

23.5 USE OF BASED ARGUMENTS (D)

Several of the built-in functions and pseudo-variables in the list
below require the first argument to be an identifier or a subscripted
identifier.

In such cases, if the argument has the BASED attribute, then it may be
qualified by a POINTER variable in the way described in the chapter
entitled "BASED Storage and POINTERs."

23-2

BUILT-IN FUNCTIONS AND PSEUDO-VARIABLES (B-D,R)

23.6 ALPHABETICAL LIST OF BUILT-IN FUNCTIONS AND PSEUDO-VBLES (R)

23.6.1 ABS Built-in Function

ARGUMENT: X, either FIXED or FLOAT. If not arithmetic, x will be
converted to FIXED.

RESULT: CPL returns the absolute value of X. If X is FIXED, then
ABS(X) is FIXED: if x is FLOAT, then ABS(X) is FLOAT.

23.6.2 ACOS Built-in Function

WARNING: This function is not in the ANSI PL/I standard, and so may
not be available in other PL/I imple~entations.

Arguments: X, FLOAT. If X is not FLOAT, then it will be converted to
FLOAT.

Result: The result, V, will be the arccos of X in radians, such that
O<=V<pi.

23.6.3 ADDR Built-in Function

ARGUMENT: A, where A is any subscripted or unsubscripted variable of
any data type, either scalar or array.

RESULT: The result is the "address" of the variable. This address
can be used to qualify a BASED identifier by means of the "->"
operator, or it can be assigned to a POINTER variable for later use.

For more information, please see the chapter entitled "BASED storage
and POINTERs."

23.6.4 AFTER Built-in Function

ARGUMENTS: A,B, where both arguments are either both CHARACTER or BIT
strings. If both arguments are BIT strings, then no conversion is
done: otherwise, both are converted to CHARACTER strings if
necessary.

RESULT: AFTER returns a CHARACTER string if the arguments are
CHARACTER, and a BIT string if the arguments are BIT. The string
returned is determined by the following rules:

1. If A is a null string, then the result is a null string.

2. If B is a null string, then the result is the string A.

3. If B is not a null string, and B is not a substring of the
string A, then the result is the null string.

4. If B is not a null string, and B is a substring of the string
A, then the result is the string of all characters or bits in
A which follow the first occurrence of B in A.

23-3

BUILT-IN FUNCTIONS AND PSEUDO-VARIABLES (B-D,R)

EXAMPLE: A reference to AFTER('ABCDABCD','CD') yields the result
'ABCD'.

23.6.5 ALLOCATION Built-in Function

Abbrev: ALLOCN for ALLOCATION

ARGUMENTS: A, where A is an identifier having the CONTROLLED' storage
class attribute.

RESULT: The result is an integer. If A is not allocated, then the
result is o. If A is allocated, then the result is the current number
of allocations.

23.6.6 ASIN Built-in Function

WARNING: This function is not in the ANSI PL/I standard, and so may
not be available in other PL/I implementations.

Argument: X, FLOAT. If X is not FLOAT, then it will be converted to
FLOAT.

Result: The result, V, will be the arcsine of X in radians, such that
-pi/2 <=V<=+pi/2.

23.6.7 ATAN Built-in Function

ARGUMENTS: Y[,X] -- the second argument is optional. Both arguments
must be FLOAT. A non-FLOAT argument will be converted to FLOAT.

RESULT: The result V will be a FLOAT value computed according to the
following rules:

1. If the second argument (X) is not specified, then V will be
the arctangent of Y, specified in radians, such that
-pi/2<V<pi/2.

2. If both arguments are specified, then V will be the
arctangent of (Y/X) , specified in radians whose angle lies in
the quadrant of the coordinates (X,Y). The mathematical
rules are as follows:

1. If X>=O, then O<=V<=pi.

2. If X<O then -pi<V<O.

23-4

BUILT-IN FUNCTIONS AND PSEUDO-VARIABLES (B-D,R)

23.6.8 ATAND Built-in Function

This function is the same as the ATAN built-in function, except that
the value returned is in radians. The value of ATAND is computed by
multiplying the value of ATAN by l80/pi.

23.6.9 BEFORE Built-in Function

ARGUMENTS: A,B, where the arguments are either both CHARACTER strings
or both BIT strings. If both arguments are BIT strings, then no
conversion is done; otherwise, both are converted to CHARACTER
strings if necessary.

Result: BEFORE returns a CHARACTER string if the arguments are
CHARACTER, or a BIT string if the arguments are BIT. The string
returned is determined as follows:

1. If A is a null string, then the result is a null-string.

2. If B is a null string, then the result is a null string.

3. If B is not a null string and it is not a substring of A,
then the result is the string A.

4. If B is not a null string and B is a substring of A, then the
result is the string of all bits or characters which precede
the first occurrence of the substring B in A.

EXAMPLE: A reference to BEFORE('ABCDABCD', 'CD') yields the result
'AB'.

23.6.10 CEIL Built-in Function

ARGUMENTS: X, either FIXED or FLOAT. If X is not arithmetic, it will
be converted to FIXED.

RESULT: If X is FLOAT, the result is FLOAT; otherwise, the result is
FIXED. In either case, the result equals the smallest integer that is
greater than or equal to the value of X.

23.6.11 COLLATE Built-in Function

ARGUMENTS: none

RESULT: COLLATE returns a CHAR(128) string containing all characters
in the ASCII collating sequence in increasing order. The first
character in the result has octal value 0 (the null character), and
the last character has octal value 177.

23-5

BUILT-IN FUNCTIONS AND PSEUDO-VARIABLES (B-D,R)

23.6.12 COpy Built-in Function

ARGUMENTS: S,N, where S is a CHARACTER or BIT string and N is a
non-negative integer. If S is not a BIT string, then S will be
converted to a CHARACTER string, if necessary. N will be converted to
FIXED, if necessary.

RESULT:
string;

If the string S is a BIT string, then the result is a BIT
otherwise the result is a CHARACTER string.

If N=O, then the result is the null BIT or CHARACTER string~

If N>O, then the result is a string of length N*LENGTH(S) containing N
copies of the string S.

EXAMPLE: COPY('ABCD',3) returns 'ABCDABCDABCD'.

23.6.13 COS Built-in Function

ARGUMENTS: X, FLOAT. If X is not FLOAT, then it will be converted to
FLOAT.

RESULT: X is an angle assumed to be given in radians. The result is
the cosine of X.

23.6.14 COSO Built-in Function

ARGUMENTS: X, FLOAT. If X is not FLOAT, then it will be converted to
FLOAT.

RESULT: X is an angle assumed to be given in degrees. The result is
the cosine of X.

23.6.15 COSH Built-in Function

WARNING: This function is not in the ANSI PL/I standard, and so may
not be available in other PL/I implementations.

ARGUMENTS: X, FLOAT. If X is not FLOAT, then it will be converted to
FLOAT.

RESULT: The hyperbolic cosine of X is returned as a FLOAT result.

23.6.16 DATE Built-in Function

ARGUMENTS: none

RESULT: The result is a CHARACTER string of length 6, in the format
'yymmdd', where yy represents the year, in the range 00 to 99, mm
represents the month, in the range 01 to 12, and dd represents the
day, in the range 01 to 31.

23-6

BUILT-IN FUNCTIONS AND PSEUDO-VARIABLES (B-D,R)

23.6.17 DIMENSION Built-in Function

Abbrev: DIM for DIMENSION

ARGUMENTS: X,N. The first argument must be a single unsubscripted
identifier~ and the identifier must be DECLAREd to be an array. N
will be converted to FIXED, if necessary.

RESULT: N must be a positive integer less than the number of
dimensions in the array X. Let Ib and ub be the lower bound and upper
bound, respectively, of the N'th dimension in X. Then the result is
the FIXED value (ub-lb+l).

EXAMPLE: If we have DECLARE A(10,2:6), then DIMENSION(A,l) returns
10, and DIMENSION(A,2) returns 5.

23.6.18 DIVI Built-in Function

WARNING: This function is not in the ANSI PL/I standard, and so will
not be available in other PL/I implementations.

ARGUMENTS: X,Y, FIXED. If either argument is not FIXED, it will be
converted to FIXED.

RESULT: The truncated value of X/Y is returned as a FIXED value.

NOTE: This function and the DIVF function are intended to make it
easier for you to do without integer division. DIVI takes two FIXED
arguments, and returns the truncated quotient. If you move your
program to other implementations of PL/I, occurrences of DIVI(X,Y)
should be replaced by occurrences of TRUNC(X/Y).

23.6.19 DIVF Built-in Function

WARNING: This function is not in the ANSI PL/I standard, and so will
not be availabl~ in other PL/I implementations.

ARGUMENTS: X,Y, FLOAT. If either argument is not FLOAT, it will be
converted to FLOAT.

RESULT: The FLOAT value of X/Y is returned.

NOTE: This function and the DIVI
easier for you to do without
arguments (usually FIXED), and it
the FLOAT quotient. If you
implementation, occurrences of
occurrences of FLOAT (X/Y) •

23.6.20 EVERY Built-in Function

function
integer

converts
move your

DIVF(X,y)

are inteded to make it
division. DIVF takes two

them the FLOAT and returns
program to another PL/I
should be replaced by

ARGUMENTS: X, a BIT string. If X is not a BIT string, it will be
converted to BIT.

23-7

BUILT-IN FUNCTIONS AND PSEUDO-VARIABLES (B-D,R)

RESULT: EVERY returns a BIT(l) value. If X is the null BIT string or
if every bit of X is 'l'B, then EVERY returns 'l'B: otherwise, if X
contains at least one 'O'B bit, then EVERY returns 'O'B.

EXAMPLE: EVERY('lllOll'B) returns 'O'B, while EVERY('lll'B) returns
'1 'B.

23.6.21 EXP Built-in Function

ARGUMENTS: X, FLOAT. If X is not FLOAT, then it is converted to
FLOAT.

RESULT: This function returns the FLOAT value e**X, where e is base
of the natural logarithm system.

23.6.22 FLOOR Built-in Function

ARGUMENTS: X, either FIXED or FLOAT. If X is not FLOAT, then it is
converted to FIXED, if necessary.

RESULT: If X is FIXED, then the result is X. If X is FLOAT, then the
result is the FLOAT value of the greatest integer less than or equal
to the value of X.

23.6.23 FLTED Built-in Function

WARNING: This function is not in the ANSI PL/I standard, and so will
not be available in other PL/I implementations.

ARGUMENTS: V, F, W [,0 [,S]] between 3 and 5 arguments are
specified. V must be FLOAT, or will be converted to FLOAT if
necessary. All other arguments are FIXED, and will be converted to
FIXED if necessary.

RESULT: FLTED returns a variable length CHARACTER string. It formats
the value V in the same way that the PUT LIST or PUT EDIT statements
would do so.

If F=O, then V is returned in the format which would be given by a PUT
LIST statement to a file with the VFORM attribute. (This non-standard
file attribute specifies that the output is to have a variable format
which depends on the value of the number being printed.)

If F=l, then V is returned in the format specified by the PUT EDIT
format item

E{w [,d [,s]])

If F=2, then V is returned in the format specified by the PUT EDIT
format item

F{w [,d [,s]])

23-8

BUILT-IN FUNCTIONS AND PSEUDO-VARIABLES (B-D,R)

23.6.24 HBOUND Built-in Function

ARGUMENTS: X,N. The first argument must be a single unsubscripted
identifier, and the identifier must be DECLAREd to be an array. N
will be converted to FIXED, if necessary.

RESULT: N must be a positive integer less than the number of
dimensions in the array X. The result is the FIXED value equal to the
upper bound of the N'th dimension of X.

EXAMPLE: If we have DECLARE A(10,2:6), then HBOUND(A,l) returns 10
and HBOUND(A,2) returns 6.

23.6.25 HIGH Built-in Function

ARGUMENT: N, FIXED. If N is not FIXED, then it will be converted to
FIXED.

RESULT: N must be a non~negative integer. The result is a CHARACTER
string of length N. If N=O, then the result is the null string. If
N>O, then the result is a CHAR(N) string containing N occurrences of
the highest character in the ASCII collating sequence, octal value
177.

23.6.26 INDEX Built-in Function

ARGUMENTS: S,C, either both CHARACTER strings or both BIT st~ings.
If either of S or C is not a BIT string, then both arguments are
converted to CHARACTER.

RESULT: INDEX returns a FIXED value. If C is not a null string, and
if C is a substring of S, then INDEX returns the position in S of the
leftmost occurrence of C. If C is a null string or it is not a
substring of S, then INDEX returns 0.

EXAMPLE: INDEX ('ABCDABCD ' , 'CD') returns 3, while
INDEX('ABCDABCD','XY') returns 0.

23.6.27 LBOUND Built-in Function

ARGUMENTS: X,N. The first argument must be a single unsubscripted
identifier, and the identifier must be DECLAREd to be an array. N
will be converted to FIXED, if necessary.

RESULT: N must be a positive integer less than the number of
dimensions in the array X. The result is the FIXED value equal to the
lower bound of the N'th dimension of X.

EXAMPLE: If we have DECLARE A(10,2:6), then LBOUND(A,l) returns 1,
and LBOUND(A,2) returns 2.

23-9

BUILT-IN FUNCTIONS AND PSEUDO-VARIABLES (B-O,R)

23.6.28 LENGTH Built-in Function

ARGUMENTS: S, which must be CHAR or BIT. If it is not BIT, then it
is converted to CHAR, if necessary.

RESULT: LENGTH returns a FIXED value equal to the length of the
string S.

EXAMPLE: LENGTH('ABC') returns 3, LENGTH('llOl'B) returns 4, and
LENGTH('267'B3) returns 9. LENGTH(") returns o.

23.6.29 LOG Built-in Function

ARGUMENTS: X, FLOAT. If X is not FLOAT, then it is converted to
FLOAT.

RESULT: LOG returns the natural logarithm of X, as a FLOAT result. X
must be positive.

23.6.30 LOGIO Built-in Function

ARGUMENTS: X, FLOAT. If X is not FLOAT, then it is converted to
FLOAT.

RESULT: LOGIO returns the common logarithm of X, as a FLOAT result.
X must be positive.

23.6.31 LOG2 Built-in Function

ARGUMENTS: X, FLOAT. If X is not FLOAT, then it is converted to
FLOAT.

RESULT: X must be positive. LOG2 returns the base 2 logarithm of X.

23.6.32 LOW Built-in Function

ARGUMENT: N, FIXED. If N is not FIXED, then it will be converted to
FIXED.

RESULT: N must be a non-negative integer. The result is a CHARACTER
string of length N. If N=O, then the result is is the null string.
If N>O, then the result is a CHAR(N) string containing N occurrences
of the lowest character in the ASCII collating sequence, value 0 (this
is the "null" character).

23.6.33 MAX Built-in Function

ARGUMENTS: Xl,X2, ••• XN. This function takes a varying number of
arguments, either all FIXED or all FLOAT. If at least one argument is
FLOAT, then all will be converted to FLOAT, if necessary; otherwise,
all are converted to FIXED, if necessary.

23-10

BUILT-IN FUNCTIONS AND PSEUDO-VARIABLES (B-D,R)

RESULT: If the arguments are FLOAT, then a FLOAT result is returned;
otherwise a FIXED result is returned. In any case, the result is the
numerical maximum of the arguments.

EXAMPLE: MAX(2,3,200,-5,4) returns 200.

23.6.34 MIN Built-in Function

ARGUMENTS: Xl,X2, ••• ,XN. This function takes a varying number of
arguments, either all FIXED or all FLOAT. If at least one argument is
FLOAT, then all will be converted to FLOAT, if necessary; otherwise
all are converted to FIXED, if necessary.

RESULT: If the arguments are FLOAT·, then a FLOAT result is returned;
otherwise, a FIXED result is returned. In any case, the result is the
numerical minimum of the arguments.

23.6.35 MOD Built-in Function

ARGUMENTS: X,y, either both FIXED or both FLOAT. If one argument is
FLOAT, then the other is converted to FLOAT, if necessary; otherwise,
both are converted to FIXED, if necessary.

RESULT: If the arguments are FLOAT, then the result is FLOAT;
otherwise, the result is FIXED. The result is the remainder obtained
by dividing X by Y. The.actual result is computed in the following
two cases:

1. If Y=O, then the result is X.

2. If Y~=O, then the result is given by:
Y-X*FLOOR(Y/X)

23.6.36 NULL Built-in Function

ARGUMENT: None

RESULT: A reference to NULL() returns a "null" POINTER value.

For more information on the NULL built-in function, please refer to
the chapter entitled "BASED storage and POINTERs."

23.6.37 ONMSG Built-in Function

WARNING: ONMSG is not in the ANSI PLII standard, and so will not be
available in other PL/I implementations.

ARGUMENTS: None

RESULT: You use ONMSG in an ON-unit when, for example, you wish to
type out a message indicating why the ON-unit was taken. ONMSG
returns a character string value containing the error message which
would have been typed if the ON-unit had not been taken.

23-11

BUILT-IN FUNCTIONS AND PSEUDO-VARIABLES (B-D,R)

For further information, please see the chapter entitled "Error
Handling and ON-conditions."

23.6.38 RANDOM Built-in Function

WARNING: RANDOM is not in the ANSI PLII standard, and so will not be
available in other PLII implementations.

ARGUMENTS: none

RESULT: RANDOM returns a FLOAT value, V, in the range O<V<l. Each
call to RANDOM returns a new random number, such that multiple calls
to RANDOM produce a set of numbers uniformly distributed over the open
interval (0,1).

EXAMPLE: To write a CPL program which plays a card game, you may wish
to generate a random hand. To return a random integer between 1 and
52, use TRUNC(I+52*RANDOM(}}.

NOTE: Of course, RANDOM does not return random numbers in the true
mathematical sense. Each random number is computed from the preceding
one by an algorithm which garbles the bits. The result is that for a
few million calls to RANDOM, the sequence will seem to be perfectly
random. However, there is a cycle length of the random number
sequence, probably on the order of 10**6 numbers.

23.6.39 RANDOM Pseudo-variable

ARGUMENTS: none

RESULT: The RANDOM pseudo-variable is used to initialize the RANDOM
random number generator. As stated above, ~ach new random number is
generated by an algorithm from the old one. The RANDOM
pseudo-variable can be used to initialize the random number generator.

You initialize the random number generator by executing the statement

RANDOM(}=value;

where "value" is a FLOAT value or expression.
will be converted to FLOAT.)

(If it is not FLOAT, it

If "value" is non-zero, then that value will be used to initialize the
random number generator. For example, if you execute RANDOM{)=2, then
subsequent calls to the RANDOM built-in function will generate a
sequence of random numbers based on 2 as the initializing value. If
you then rerun the same program, specifying RANDOM{}=2, then you will
get the same sequence of random numbers. This is a useful feature if
you wish to debug a program using the same sequence of numbers.
Executing RANDOM(}=3 will cause a different sequence of random numbers
to be generated.

If you execute RANDOM{}=O, then CPL will use the time of day to create
a unique generator. After you have debugged a program, you should
begin your program with this statement so that each invocation of the
program will generate a different sequence of random numbers.

23-12

BUILT-IN FUNCTIONS AND PSEUDQ-VARIABLES (B-D,R)

23.6.40 REVERSE Built-in Function

ARGUMENT: S, either a BIT string or a CHAR string. If S is neither
BIT nor CHAR, then it will be converted to CHAR.

RESULT: The result is a CHARACTER or BIT string of the same length as
the CHARACTER or BIT string argument, S. The string contains all the
characters or bits of S, but in reverse order.

EXAMPLE: REVERSE('ABCD') returns 'DCBA'.

23.6.41 SIGN Built-in Function

ARGUMENTS: X, where X is either FIXED or FLOAT. If it is not FIXED
or FLOAT, X will be converted to FIXED.

RESULT: SIGN returns a FIXED value +1, 0, or -1, depending upon
whether the argument is greater than 0, equal to 0, or less than 0,
respectively.

EXAMPLE: SIGN(-5) returns -1, while SIGN(23.4E16) returns +1.

23.6.42 SIN Built-in Function

ARGUMENTS: X, FLOAT. If X is not FLOAT, then it will be converted to
FLOAT.

RESULT: X is an angle assumed to be given in radians. The result is
the FLOAT value of the sine of X.

23.6.43 SIND Built-in Function

ARGUMENTS: X, FLOAT. If X is not FLOAT, then it will be converted to
FLOAT.

RESULT: X is an angle assumed to be given in degrees. The result is
the FLOAT value of the sine of X.

23.6.44 SINH Built-in Function

WARNING: This function is not in the ANSI PL/I standard, and so may
not be available in other PL/I implementations.

ARGUMENTS: X, FLOAT. If X is not FLOAT, then it will be converted to
FLOAT.

RESULT: The hyperbolic sine of X is returned as a FLOAT result.

23-13

BUILT-IN FUNCTIONS AND PSEUDO-VARIABLES (B-D,R)

23.6.45 SOME Built-in Function

ARGUMENTS: X, a BIT string. If X is not a BIT string, then it will
be converted to BIT.

RESULT: SOME returns a BIT(l) value. If X contains at least one bit
with value 'liB, then the value of SOME(X) is 'liB; otherwise, the
value is 'O'B.

EXAMPLE: SOME("B) returns 'O'B.
SOME (' 000000100 'B) returns '1 'B.

23.6.46 SQRT Built-in Function

SOME('OOOOOO'B) returns 'O'B.

ARGUMENTS: X, FLOAT. If X is not FLOAT, then it will be converted to
FLOAT.

RESULT: . X must have non-negative value. CPL will return the positive
square root of X.

23.6.47 STRING Built-in Function

ARGUMENTS: A, where A is an array whose elements are either CHAR
NONVARYING or BIT NONVARYING.

RESULT: All the elements of array A are concatentated into one long
BIT or CHARACTER string, and the result is returned.

EXAMPLE:
DECLARE A(3) CHAR(S);
A(l)='ABCDE'; A(2)='123~S'; A(3)='VWXYZ';

After the above statements have been executed, an invocation of
STRING(A) will return the CHAR(lS) string, 'ABCDE12345VWXYZ'.

23.6.48 STRING Pseudo-variable

ARGUMENT: A, where A is an array whose elements are either CHARACTER
NONVARYING or BIT NONVARYING.

RESULT: If you assign a value to STRING(A) , then CPL treats the
elements of the array A as one long CHARACTER or BIT string, and makes
the assignment to that long string.

EXAMPLE:
DECLARE A(3) CHAR{l);
STRING (A) = 'ABC';

After the last statement is executed, A(l) will equal 'A', A(2) will
equal 'B', and A(3) will equal 'ct.

23-14

BUILT-IN FUNCTIONS AND PSEUDO-VARIABLES (B-D,R)

23.6.49 SUBSTR Built-in Function

ARGUMENTS: S,I[,J] -- the third argument is optional. The first
argument must be either CHARACTER or BIT; if it is not a BIT string,
then it is converted to CHARACTER, if necessary. The arguments I and
J will be converted to FIXED if they are not already FIXED.

RESULT: SUBSTR returns the substring of string S beginning at the bit
or character in position I, and continuing for J bits or characters
(if J is specified), or to the end of string S (if J is omitted).

EXAMPLE: SUBSTR('ABCDEF',2,3) returns 'BCD', and SUBSTR('ABCDEF',4)
returns 'DEF'.

23.6.50 SUBSTR Pseudo-variable

ARGUMENTS: S,I[,J] -- the third argument is optional. The first
argument, S, must be a scalar identifier or array element with either
BIT or CHARACTER type, either VARYING or NONVARYING. The arguments I
and J must be FIXED; they will be converted to FIXED if they are not.

RESULT: If you assign a value to SUBSTR(S,I,J), then CPL wil assign
the value to the substring of S starting with the I'th character and
continuing for J characters. If you assign a value to SUBSTR(S,I),
then CPL will assign the value to the substring of S starting with the
I'th character and contuing to the end of the string.

NOTE: If S is a VARYING string, the assignment to the SUBSTR
pseudo-variable will not change the length of S.

EXAMPLE:
DECLARE A CHAR(6);
A='ABCDEF';
SUBSTR(A,2,4)='1234';

The last statement causes A to have the value 'A1234F'. If the last
statement had been SUBSTR(A,4)='1', then A would equal 'ABCI

23.6.51 TANH Built-in Function

ARGUMENT: X, FLOAT. If X is not FLOAT, then it will be converted to
FLOAT.

RESULT: The FLOAT value of the hyperbolic tangent of X is returned.

23.6.52 TIME Built-in Fun6tion

ARGUMENTS: none

RESULT: TIME returns a CHARACTER string of length 9 which contains
the time of day in the format 'hhmmssddd', where hh is hours in the
range 00 to 23, mm 1S minutes in the range 00 to 59, ss is seconds in
the range 00 to 59, and ddd is milliseconds in the range 000 to 999.

23-15

BUILT-IN FUNCTIONS AND PSEUDO-VARIABLES (B-D,R)

23.6.53 TRANSLATE Built-in Function

ARGUMENTS: S,R[,P] -- the third argument is optional. All arguments
will be converted to CHARACTER, if they are not already CHARACTER.

RESULT: The result is a CHARACTER string the same length as the
argument S. CPL obtains the result from the string S by translating
some of the characters, as specified by the other argument(s),
according to the following rules:

1. If you have not specified the argument P, then CPL supplies
an argument P equal to the value returned by the COLLATE
built-in function.

2. The argument R must be the same length as the argument P. If
it is not, then CPL will either truncate it (by removing
characters from the end) or pad it (by adding blanks to the
end) so that it is the same length as P.

3. For each character in the string S, if any, CPL performs the
following operations:

1. CPL finds the leftmost occurrence, if any, of this
character in the string P.

2. If this character does not occur in string P, then CPL
inserts this character into the result string.

3. If this character occurs in the string P, and the
leftmost occurrence is at position i, then CPL finds the
character in the i'th position of string R and inserts
that character into the result string.

EXAMPLE: TRANSLATE('ABCDEFG', '123', 'DGCBCC') returns 'A 31EF2'.

23.6.54 TRUNC Built-in Function

ARGUMENT: X, either FIXED or FLOAT. If X is not FLOAT, then it is
converted to FIXED, if necessary.

RESULT: If X is FIXED, then the result is X. If X is FLOAT, then the
result is the FLOAT value of the integer obtained by "truncating" the
value of X -- by removing the fractional part.

If X is positive, then TRUNC(X) = FLOOR(X). If X is negative, then
TRUNC(X) = CEIL(X).

EXAMPLE: TRUNC(2.8) returns 2, while TRUNC(-2.8) returns -2.

23.6.55 UNSPEC Built-in Function

ARGUMENT: X, where X is any unsubscripted identifier of any
computational data type, either scalar or array.

23-16

BUILT-IN FUNCTIONS AND PSEUDO-VARIABLES (B-D,R)

RESULT: The result is a BIT string representing the entire data area
occupied by the variable X. Thus, UNSPEC allows you to examine the
BIT representation of CPL data. All fullwords in the data area are
included in the BIT representation, so that the length of the BIT
string returned by UNSPEC will always be an exact multiple of 36.

Note that the entire data area is included. This includes bit 35 of
character string words, as well as bits at the end of the data area
which are used as filler.

It is legal to take UNSPEC of a POINTER variable, but the result will
always be a BIT(36) string of zeroes.

EXAMPLE: If I=5; has been executed, then UNSPEC(I) will return the
BIT string 'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOlOl'B.

23.6.56 UNSPEC Pseudo-variable

ARGUMENT: X, same as for UNSPEC built-in function.

RESULT: If you assign a BIT string to UNSPEC(X) , then the data area
will be set to that BIT string, regardless of whether the bit string
is meaningful for that data type. The data area includes all 36-bit
words, as in the case of the UNSpEC built-in function.

It is legal to apply the UNSPEC pseudo-variable to a POINTER variable,
but doing so will have no effect upon the value of the POINTER.

EXAMPLE: If I is FIXED, and UNSPEC(I)=(33) 'l'B; is executed, then I
will assume the value -8.

23.6.57 VERIFY Built-in Function

ARGUMENTS: S,C. Both arguments must be CHARACTER strings. They will
be converted to CHARACTER strings, if necessary.

RESULT: The result is a FIXED value, computed as follows:

1. If S is the null CHARACTER string, then the result is O.

2. If each of the characters of the string S occurs in the
string C, then the result IS O.

3. Otherwise, suppose the character in the i'th position of the
string S is the first character in S which does not also
appear in the string C. Then return the value i.

EXAMPLE: VERIFY can be used to verify that all characters in a given
string are valid for a particular context. The second argument to
VERIFY should contain all the "legal" characters, so that the position
of the first "illegal" character will be returned.

For example, if you wish to find the first non-numeric character in
'729B788F9', then VERIFY('729B788F9','0123456789') will return the
position, 4, of the character 'B'.

23-17

CHAPTER 24

CONVERSIONS AMONG COMPUTATIONAL DATA TYPES (D)

Except for the conversions from FIXED to FLOAT and FLOAT to FIXED, the
PL/I conversion rules are quite complicated. For this reason, you
should use conversions to and from CHARACTER and BIT data types with
great care.

This chapter gives all the rules for conversions.

24.1 CONVERSIONS FROM FIXED (D)

24.1.1 FIXED To FLOAT (D)

This conversion presents no problem. No errors can occur.

EXAMPLE: 2 is converted to 2.0EO.

24.1.2 FIXED To CHARACTER (D)

The result is CHAR(13). The integer value is represented in character
format as a decimal integer, and the value is right adjusted in the 13
character field. All leading zeros are suppressed. If the integer is
negative, then the number is preceded by a minus sign. All other
characters are blank.

No conversion errors can occur.

EXAMPLE: The integer 23 is converted to 'bbbbbbbbbbb23', where "b" is
a blank character. The integer -345 is converted to 'bbbbbbbbb-345'.

24.1.3 FIXED To BIT (D)

The result is BIT(35). If the source integer is negative, then the
absolute value is taken. The integer is then represented in binary
notation, with 35 binary digits. The BIT(35) result consists of these
35 binary digits.

An error occurs if the source is the minimum negative number.

EXAMPLE: The value 18 is converted to
'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOlOOlO'B.

24-1

CONVERSIONS AMONG COMPUTATIONAL DATA TYPES (D)

24.2 CONVERSIONS FROM FLOAT (D)

24.2.1 FLOAT To FIXED (D)

The FLOAT value is converted to FIXED by "truncating" any fractional
part. For positive numbers, the result is the greatest integer not
greater than the FLOAT source value, and for negative numbers the
result is the smallest integer not less than the FLOAT source value.

An error occurs if the absolute value of the FLOAT value is greater
than 2 to the power 35.

EXAMPLE: 2.35 is converted to 2, while -2.35 is converted to -2.

24.2.2 FLOAT To CHARACTER (D)

The result is a character string of length 14. The format is:

sd.dddddddEsdd

where the symbols have the following meanings:

1. The first "s" indicates the sign of the number. It will be
"-" for a negative number, and blank for a positive number.

2. The first "d" is the first significant digit of the number.
It is always non-zero, unless the number is zero.

3. The next 7 "d" characters are the next seven significant
digits of the number.

4. The next "s" indicates the sign of the exponent~ it will be
"-" if the exponent is negative, and "+" otherwise.

5. The last two "d" characters are the two digits of the
exponent. The exponent is the power of ten which must be
multiplied by the mantissa shown to get the actual number.

No error can occur in this conversion.

EXAMPLE: 23.3 is converted to '2.3300000E+Ol'. -Oe234 is converted
to '-2.3400000E-Ol'.

24.2.3 FLOAT To BIT (D)

The result is BIT(35).
value to FIXED, and
rules already given.

The conversion is made by converting the FLOAT
then the FIXED value to BIT, according to the

An error will occur if the absolute value of the FLOAT value is
greater than 2 to the power 35.

EXAMPLE: -9.3 is converted to 'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOlOOl'B.

24-2

CONVERSIONS AMONG COMPUTATIONAL DATA TYPES (D)

24.3 CONVERSIONS FROM CHARACTER (D)

24.3.1 CHARACTER To FIXED Or FLOAT (D)

The source character string must consist of an integer or floating
point constant, optionally preceded by and followed by one or more
blanks.

The constant is evaluated and converted to FIXED or FLOAT, as the
target requires.

The source character string may be the null string or may contain only
blanks. In this case, the target FIXED or FLOAT value is set to zero.

An error occurs if the source character string contains a character
which makes it an illegal FIXED or FLOAT constant.

EXAMPLE of CHAR to FIXED conversion:
23.4E3 'is converted to 23400.

-23

EXAMPLE of CHAR to FLOAT conversion: -23

, is converted to -23.

is converted to
-2.3El, and' 23.4E3 'is converted to 2.34E4.

24.3.2 CHARACTER To BIT (D)

The only characters which may appear in the source character string
are D's and l's. The target BIT string has the same length as the
source CHAR string. Each bit in the target BIT string is obtained
from the corresponding character in the source CHAR string by changing
a 0 character to a O-bit, and a 1 character to a I-bit.

EXAMPLE: '00101' is converted to 'OOlOl'B.

24.4 CONVERSIONS FROM BIT (D)

24.4.1 BIT To FIXED (D)

The bits in the source BIT string are interpreted as binary digits.
The string of binary digits is then interpreted as an integer. The
resulting integer is always non-negative.

An error occurs if the resulting integer is greater than 2 to the
power 35.

EXAMPLE: 'llOOOll'B is converted to 99.

24.4.2 BIT To FLOAT (D)

The source BIT string is first converted to
result is converted to FLOAT, according
described.

FIXED, and the FIXED
to the rules already

An error occurs if there is an error in the BIT to FIXED conversion.

24-3

CONVERSIONS AMONG COMPUTATIONAL DATA TYPES (D)

24.4.3 BIT To CHARACTER (D)

The target character string has the same length as the source BIT
string. Each character of the target string is obtained from the
corresponding bit in the BIT string by converting a O-bit to a 0
character, and a I-bit to a 1 character.

No error can occur.

EXAMPLE: '1100101'B is converted to '1100101'.

24-4

CHAPTER 25

CPL ERROR MESSAGES (R)

This chapter contains an alphabetical list of CPL error messages,
together with explanatory material.

The messages are listed in the following order:

1. Those messages beginning with the character
first.

"

2. Those beginning with the character # are second.

are listed

3. Those beginning with the ~eft parenthesis ar~ next.

4. Those beginning with digits are next.

5. Those beginning with letters are last.

"keyword" AND "keyword" ARE CONFLICTING KEYWORDS

Explanation: The two specified keywords may not be specified as
optIons in the same statement or as attributes for the same identifier
in a DECLARE statement.

"keyword" AND "keyword" CONFLICT IN "OPEN" ATTRIBUTE MERGE

Explanation: When you open a file, either with an explicit OPEN
statement or implicitly with a GET, PUT, READ or WRITE $tatement, CPL
must merge file attributes from the open operation with those in the
FILE declaration. Two of these attributes have been found to
conflict.

User Response: You must change the attributes specified in either the
~ARE statement or the OPEN statement.

This message can also appear as the result of an implicit open due to
a GET, PUT, READ, or WRITE. These statements open the file with
certain implied attributes. These implied attributes are:

Statement ImElied attributes

GET STREAM and INPUT
PUT STREAM and OUTPUT
READ RECORD and INPUT
WRITE RECORD and OUTPUT

25-1

CPL ERROR MESSAGES (R)

If you wish execution to continue when this error occurs, then you may
use the UNDEFINEDFILE(filename) ON-condition to specify what action
CPL should take.

"keyword" IS ILLEGAL FOR DEVICE "device"

Explanation: (TOPS-IO only) The specified device cannot be used
the specified type of operation. For example, the device LPT:
line printer) is illegal for input, while the device CDR: (the
reader) is illegal for output.

for
(the
card

User Response: If you wish execution to continue when this error
occurs, then you may use the UNDEFINEDFILE(filename) ON-condition to
specify what action CPL should take.

"identll IS NOT ALLOCATED

Explanation: Either storage has not been allocated for the specified
variable, or storage was once allocated but has been freed.

There are several circumstances which can give rise to this or a
similar message:

1. You are referencing a CONTROLLED variable, but you have never
executed an ALLOCATE statement for the variable.

2. You are referencing a CONTROLLED variable for which you have
executed an ALLOCATE statement, but you have also executed a
FREE statement releasing the storage.

3. You have initiated a DO-group with a DO-loop variable which
occupies CONTROLLED or BASED storage, but during execution of
the DO-group the storage occupied by the DO-loop variable has
been freed. This error will be detected when the END is
reached and CPL attempts to iterate the DO-group.

4. You have invoked a function or subroutine, passing a real
(non-dummy) argument occupying CONTROLLED or BASED storage,
you have freed the storage, and you are attempting to access
the corresponding parameter. CPL establishes the rule that
if the storage occupied by an argument is freed, then the
corresponding parameter is no longer available for access.

5. You have specified the SUBSTR pseudo-variable in such a way
that the first argument occupies CONTROLLED or BASED storage,
and this storage was released while CPL was evaluating the
second or third argument. (This could happen if the second
or third argument involves a call to a function PROCEDURE.)

Note also the following: If you type an XEQ statement rather than a
CONTINUE statement, they all BASED and CONTROLLED storage is freed.

User Response: You should make sure that your CONTROLLED and BASED
storage is allocated before it is needed, and is not freed until your
program is finished referencing it.

25-2

CPL ERROR MESSAGES (R)

If the logic of your program demands that storage be freed even though
you still need the value of the variable, then you should copy that
variable to an AUTOMATIC o~ STATIC variable which will not be freed.

Note: If this or a similar error message occurs with reference to
AUTOMATIC or STATIC storage, then the message is a CPL system error.
Please save all relevant output and report the problem to Digital
Equipment Corporation.

"*" LEGAL FOR ident ONLY WITH "PARAMETER"

Exelanation: In a declaration, you have specified an asterisk in an
extent expression (a string length or an array bound), but you have
not specified "parameter." An asterisk is permitted only with
"parameter."

User Response: You should retype your DECLARE statement, specifiying
the pARAMETER attribute.

"BY" OR "TO" CLAUSE ILLEGAL WITH NON-ARITHMETIC DO LOOP VBLE

Explanation; You have attempted to use a BY or TO clause with a
DO-loop va(iable which is not FIXED or FLOAT, in violation of the CPL
rules. The BY and TO clauses are illegal when the DO-loop variable is
CHARACTER, BIT or POINTER.

User Response: You must respecify the DO-loop. You can try one of
tFi'efoilowing:

1. Try to respecify it so that you you can use an arithmetic
DO-loop variable. If you were using a TO or BY clause, then
this method will often succeed.

2. Respecify it using the REPEAT and WHILE options, both of
which are legal with string-type loop variables.

"COLUMN" FORMAT ITEM ILLEGAL WITH PUT STRING

EX21anation: You have specified a PUT EDIT statement with the STRING
optIon, and one of the format items is a COLUMN format item. This is
illegal.

User Response: Replace the COLUMN format item with the X format item,
specifying the correct number of blanks.

"CURRENT STATEMENT" IS NOT DEFINED

Explanation: You have used a CONTINUE statement with no FROM option,
and there is no "current statement" from which your program can
continue.

User Response: Specify the XEQ statement to start the program from
the beginning, or else use the CONTINUE statement with the FROM option
to specify the statement from which you wish to continue executing.

25-3

CPL ERROR MESSAGES (R)

Implementation Note: CPL defines the "current statement" whenever
executlon stops-as-the result of a program error or a breakpoint. The
"current statement" is then defined to be the statement in which the
error or breakpoint occurred.

CFL will make the "current statement" undefined if you erase or change
the statement in which the error or breakpoint occurred.

"ELSE" CLAUSE IS COLLECT-ONLY -- LINE NUMBER REQUIRED

Explanation: You have used an ELSE clause in a statement which has no
line number.

"END" STATEMENT MAY NOT BE AND "ELSE" CLAUSE

Explanation: You have typed in the statement "ELSE END;"., in
vIolatIon of the CPL rules.

"GET" FILE filespec OPEN FOR keyword keyword RATHER THAN INPUT STREAM

Explanation: The file specified in a GET operation must be opened
wIth the attributes INPUT and STREAM.

User Response: There are several ways in which this error can be
made:

1. If you have written an output file, you must specify the
CLOSE statement for the file before you can start to get
input from it. Keep in mind that an OPEN statement is a
"no-operation" if the filename is already open, even with
different attributes.

2. It is illegal to perform READ and GET operations on the same
input file. You may open the same input file twice with
different file variables and then do GETs with one file
variable and READs with the other.

3. The declaration for the file identifier may
attributes which conflict with INPUT and STREAM.
case you should change your file declaration.

contain
In this

4. It is legal to be doing GETs and PUTs to the same disk file
provided that you are using different file identifiers in
CPL. If you are doing GETs and PUTs to the same disk file
then use two different identifiers and open them separately
for INPUT and OUTPUT using the TITLE option of the OPEN
statement.

"NONVARYING" SPECIFIED FOR ident WITHOUT "BIT" OR "CHAR"

Explanation: In a declaration,
attribute for an identifier
specified.

you have
for which

25-4

specified the NONVARYING
neither BIT nor CHAR were

CPL ERROR MESSAGES (R)

"PAGE" INVALID FOR NON-PRINT FILE filespec

Explanation: You have used either the PAGE option of the PUT
statement or a PAGE format item in a PUT EDIT statement, but the file
does not have the PRINT attribute.

User Response: Change the FILE declaration by adding the PRINT
at'Fribute.

"RETURN" IN AN ON-UNIT IS ILLEGAL

Explanation: You have attempted to execute a RETURN statement from an
ON-unlt.

User Response: To terminate an ON-unit, you should use a GOTO
statement, specifying the statement with which you wish to continue
executing.

"RETURN" NOT INSIDE A PROCEDURE

Explanation: You have attempted to execute a RETURN statement, but
the statement is not inside a PROCEDURE.

User Response: If you wish to halt execution of your program, then
use-a STOP statement.

"RETURN" WITH EXPRESSION FOR CALL STATEMENT

Explanation: A PROCEDURE has been invoked as a subroutine, using a
CALL statement, but you are attempting to specify a return expression
as if it were a function invocation.

User Response: Replace the RETURN statement with one which does not
specify an expression.

If you are using the same PROCEDURE for both subroutine and function
invocations, then you will need a way of testing how the PROCEDURE was
invoked (perhaps by examining the value of one of the parameters), and
then use an IF statement to specify the correct form of the RETURN
statement.

"RETURN" WITH NO EXPRESSION FOR FUNCTION CALL

Explanation: A PROCEDURE has been invoked as a function, but you are
attemptlng to execute a RETURN statement with no expression to specify
what value the function is to return.

This message will also appear if you execute the END statement of a
PROCEDURE invoked as a function, since a RETURN statement is simulated
in such a case.

User Response: Replace the RETURN statement with one which does
specify an expression value.

If you are using the same PROCEDURE for both subroutine and function
invocations, then you will need a way of testing how the PROCEDURE was
invoked (perhaps by examining the value of the one of the parameters),
and then use an IF statement to execute the correct form of the RETURN
statement.

25-5

CPL ERROR MESSAGES (R)

"SET" VARIABLE ident IS NOT A POINTER

Explanation: The identifier appearing in the SET option of the
ALLOCATE statement does not have the POINTER data type.

Note: Fu1l language implementations of the PL/I language permit an
"lmplicit" declaration as POINTER of any identifier appearing in the
SET option of an ALLOCATE statement. CPL requires an explicit
declaration.

User Response: Type a DECLARE statement for
specifying the POINTER attribute.

"SET" VARIABLE ident IS NOT A SCALAR

the identifier,

Explanation: The identifier appearing in the SET option of the
ALLOCATE statement has been DECLAREd to be an array.

User Response: Retype the SET option so that it specifies either a
scalar POINTER identifier or a single element of a POINTER array.

"SRIP(O)" INVALID FOR "GET" OPERATION

Explanation: You have specified the SKIP option with a zero argument
ln a GET statement. SKIP(O) is legal only in a PUT operation.

"SKIP(O)" IS INVALID FOR NON-PRINT FILE filespec

Explanation: You have specified SKIP(O) either as an option of the
PUT statement or as a format item in a PUT EDIT statement, but the
file does not have the PRINT attribute.

User Response: Change the FILE declaration by adding the PRINT
attribute.

"STRING" OPTION VBLE ident IS NOT ALLOCATED

Explanation: The variable specified in the STRING option of a PUT
statement has not been allocated. For further information, refer to
the message "ident" IS NOT ALLOCATED.

"THEN" CLAUSE MAY NOT ALSO BE AN "ELSE" CLAUSE

Explanation: You have entered a statement in the form IF
ELSE •... This is illegal.

"THEN" CLAUSE MAY NOT BE "END"

Explanation: You have illegally entered a statement of
THEN END; This is illegal.

25-6

the

THEN

form IF

CPL ERROR MESSAGES (R)

"THRU" SPEC LARGER THAN "FROM" SPEC

Explanation: In an LIST or ERASE statement with a THRU clause, the
second lIne number is smaller than the first.

"XEQ" OR "CONTINUE" TO INACTIVE BLOCK

Explanation: You have typed an XEQ or CONTINUE statement with the
FROM option which attempts to begin execution from a statement inside
a block which is not currently active.

User Response: This error may have occurred because you wish to test
our- a PROCEDURE in your program by starting to execute from a point
inside. You may accomplish the same thing by invoking the PROCEDURE
with a CALL statement after breakpointing the first statement in the
PROCEDURE. Then when you reach the breakpoint you can continue
executing from any point within the PROCEDURE.

If you are attempting to continue executing, but you are unsure which
of your PROCEDUREs is active, then type the SNAP statement for a snap
dump.

OF DIMENSIONS FOR ARG ident DIFFERENT THAN FOR PARM ident

Explanation: You have invoked a PROCEDURE and you have specified an
argument which is an array. This message will occur if the parameter
is also an array, but the number of dimensions is different.

User Response: Usually this error simply indicates that you have made
a tYPIng error when you entered the call to the PROCEDURE.

However, sometimes you may wish to reference a storage area
differently in a PROCEDURE than you do in your main program. (For
example, you may wish to reference the storage occupied as a
two-dimensional array by means of a one-dimensional array.) You may do
this in CPL by means of BASED storage and a POINTER. You let a
POINTER variable equal ADDR of the two-dimensional array, and you use
it to qualify a BASED one-dimensional array. For more information on
this technique, please read the chapter on BASED storage and POINTERs.

(RECORD) FILE filespec RECORD IS LONGER THAN ASCII INTO VARIABLE

Explanation: You have specified a READ statement, and the next input
record in the file is longer than the INTO character string.

System Action: When CPL discovers this error, it reads the record
anyway, and places characters into the INTO variable storage up to the
length of the string. Only then does CPL begin entering the error
handling logic which may result in stopping execution. For this
reason, the part of the record up to the length of the INTO variable
is available for examination.

User Response: If you wish execution to continue when this error
occurs, then you may use the RECORD ON-condition to specify what
action CPL should take.

25-7

CPL ERROR MESSAGES (R)

(RECORD) FILE filespec RECORD IS SHORTER THAN ASCII INTO VARIABLE

Explanation: You have executed a READ statement with a CHARACTER
NONVARYING INTO variable, and the next input record in the file is
shorter than the character string.

System Action: When CPL discovers this error, it reads the entire
record lnto the storage of the INTO variable, without modifying the
characters following the end of the record. Only then does CPL begin
entering the error handling logic which may result in stopping
execution. For this reason, the record is available in the INTO
variable.

User Response: If you wish execution to continue when this error
occurs, then you may use the RECORD ON-condition to specify what
action CPL should take.

(SIZE) BIT STRING TOO LONG FOR CONVERSION TO ARITHMETIC

Explanation: You have attempted to convert a BIT string longer than
B:T(35) to FIXED or FLOAT.

Note: Such a conversion is legal if all but the last 35 bits of the
blt string are zeroes.

(STRINGRANGE) ARGUMENTS TO ident OUT OF RANGE

Explanation: The second or third argument to the SUBSTR built-in
functlon or pseudo-variable is out of range.

Let k=the legngth of the first argument, let i=the value of the second
argument. Let j=the value of the third argument, if it is specified,
or else let j=k-i+l. Then an error condition occurs if any of these
inequalities are not satisfied:

1. 1 <= i <= k+l

2. 0 <= j <= k-i+l

User Response: If you wish execution to continue when this error
occurs, then you may use the STRINGRANGE ON-condition to specify what
action CPL should take.

(ZERODIVIDE) DIVISION BY ZERO

Explanation: The denominator of a floating point division operatior.
is zero.

Jser Response:

If you wish execution to continue when this error occurs, then you may
use the ZERODIVIDE ON-condition to specify what action CPL should
take.

25-8

CPL ERROR MESSAGES (R)

O**(NON-POSITIVE #) IS ILLEGAL

Explanation: You have attempted to raise 0 to a FIXED power which is
less than or equal to O.

2ND ARG TO FUNCTION ident IS OUT OF RANGE

Explanation: The second argument to the DIMENSION, LBOUND or HBOUND
functlon is out of range. This argument is required to be positive
and less than or equal to the number of dimensions in the array of the
first argument.

2ND ARGUMENT TO FUNCTION ident IS NEGATIVE

Explanation: The second argument to the COpy built-in function must
be zero or a positive number.

ALL BLOCKS RESET

Explanation: CPL has found it necessary to terminate all active BEGIN
blocks, PROCEDURE blocks, and ON-units in your program.

CPL takes this action whenever any of the following conditions occur:

1. You have inserted or erased any explicit declaration in your
program. Explicit declarations include the DECLARE statement
and a statement label.

2. You have entered or erased any BEGIN or PROCEDURE statement
in your program.

3. You have entered or erased any ON stat~ment not specifying
the SYSTEM option.

4. You have typed the XEQ statement.

5. You are attempting to continue execution of a program in
which you have entered or erased a DO or END statement which
has changed the block structure of the program. CPL detects
this by finding a BEGIN or PROC statement which is not
matched with the same END statement as before execution
stopped.

6. You are attempting to continue execution of a program which
contains a multiple-closure END statement such that a BEGIN
or PROCEDURE block is closed by a dummy end statement
generated as a result of the" multiple closure END. This is a
restriction in CPL as a result of which it is recommended
that you not use multiple closure END statements in this
fashion.

7. You have erased or changed a statement in your program which
invoked one of the active blocks. For example, if a
PROCEDURE is active, then this can happen if you erase or
change the statement which invoked the PROCEDURE, whether by
CALL or by function reference. If an ON-unit is active, then
all blocks will be reset if you erase or change the statement
which contains the error which caused the ON-unit to be
raised.

25-9

CPL ERROR MESSAGES (R)

ALL STORAGE RESET

Explanation: CPL has released and reset all program storage. All
varla6les which have previously been assigned values no longer have
these values.

CPL takes this action in two circumBtances:

1. If you enter a LOAD statement.

2. If you enter an ERASE statement which erases all remaining
statements in your program.

ALLOCATE/FREE VBLE ident IS NOT CONTROLLED OR BASED

Explanation: A variable appearing in an ALLOCATE or FREE statement
does not have the CONTROLLED or BASED storage class attribute.

User Response: Either retype the ALLOCATE statement to specify a
BASED or CONTROLLED identifier, or else use a DECLARE statement to
make the identifer CONTROLLED or BASED.

AN ON-UNIT MAY NOT BE A "DO" STATEMENT

Explanation: You have specified ON
rules.

DO;, in violation of the CPL

User Response: An ON-unit can be a single GOTO statement. If you
wlsh to speclfy an ON-unit containing a group of statements, then you
should use a BEGIN block rather than a DO group.

AN ON-UNIT MAY NOT BE AN "IF" STATEMENT

Explanation: You have specified ON
rules.

IF •.. , in violation of CPL

User Response: Ari ON-unit may be a single GOTO statement. If you
wish to use an IF statement, then enclose the IF statement in a
BEGIN/END block, where you may specify as many statements as you like.

AN ON-UNIT MAY NOT BE LABELED

Explanation: An ON-unit may not have a statement label. This is true
of a single statement ON-unit as well as the BEGIN statement of a
multi-statement ON-unit.

User Response: If you wish to execute a block of code consisting of
an ON-unlt, you will have to use a method other than a GOTO to the
ON-unit. Here are some possible ways:

25-10

CPL ERROR MESSAGES (R)

1. You may use the SIGNAL statement to raise the ON-condition
artificially, and so enter the ON-unit.

2. You may place the group of statements into a PROCEDURE, and
then call the PROCEDURE from the ON-unit and from anywhere
else in your program that you like.

ARG ident TO ident PSEUDO-VBLE MAY NOT BE AN ARRAY

Explanation: The string argument to the SUBSTR pseudo-variable must
be a scalar.

ARG ident TO ident PSEUDO-VBLE MUST'BE BIT OR CHAR TYPE

Explanation: The first argument to the SUBSTR pseudo-variable must be
a BIT or CHARACTER string.

ARG ident TO FCN ident IS NOT A CHAR OR BIT NONVARYING ARRAY

Explanation: The STRING built-in function and
requires the following attributes for its argument:
BIT or CHARACTER, which is NONVARYING.

pseudo-variable
An array, either

ARG ident TO FNC ident IS NOT ARITHMETIC OR STRING TYPE

Explanation: The argument of the UNSPEC built-in function or
pseudo-variable must be FIXED, FLOAT, CHARACTER or BIT.

ARG ident TO FUNCTION ident MUST BE AN ARRAY

Exelanation: The first argument to the DIMENSION, LBOUND and HBOUND
bUllt-ln functions must be an array.

ARG ident TO FUNCTION ident MUST BE CONTROLLED

Explanation: The argument to the ALLOCATION built-in function must
have the CONTROLLED storage class attribute.

ARGUMENT TO" "COLUMN" OPTION IS NEGATIVE

Explanation: The expression appearing with the COLUMN format item was
negative.

User Reseonse: Usually you use a positive value with the COLUMN
format ltem. You are permitted to use a zero value; in this case,
the value 1 is assumed.

ARRAY ident IS NOT ALLOCATED

Explanation:
lnformation,
ALLOCATED.

The specified array has not been allocated. For more
please refer to the error message "ident" IS NOT

25-11

CPL ERROR MESSAGES (R)

ARRAY ident SUBSCRIPT GREATER THAN UPPER BOUND

Explanation: One the subscripts in an array reference is greater than
the upper bound for the subscript specified in the array declaration.

~ Response: Usually this message indicates a simple programming
error, such as an error in a loop variable. When execution stops, use
the? statement to examine the value of the subscript variables.
Also, you may use the HBOUND built-in function to find out the upper
bound of the dimension range of the array.

If the identifier is for a BASED array which has variables in the
dimension bounds in the DECLARE statement, then the dimension bounds
are evaluated each time the array identifier is referenced.
Therefore, in this case, there are two possible programming errors:
You may have an error in the evaluation of the array bounds in the
DECLARE statement, or you may have an error in the subscript in the
array reference.

If you wish execution to continue when this error occurs, then you may
use the SUBSCRIPTRANGE ON-condition to specify what action CPL should
take.

ARRAY ident SUBSCRIPT LESS THAN LOWER BOUND

Explanation: One of the subscripts in an array reference is less than
the lower bound for the subscript specified in the array declaration.
Note that if no lower bound is specified in the array declaration,
then 1 is assumed.

user Response: Usually this message indicates a simple programming
error, such as an error in a loop variable. When execution stops, use
the? statement to examine the value of the subscript variables.
Also, you may use the LBOUND built-in function to find out the lower
bound of the dimension range of the array.

If the identifier is for a BASED array which has variables in the
dimension bounds in the DECLARE statement, then the dimension bounds
are evaluated each time the array identifier is referenced.
Therefore, in this case, there are two possible programming errors:
You may have an error in the evaluation of the array bounds in the
DECLARE statement, or you may have an error in the subscript in the
array reference.

If you wish execution to continue when this error occurs, then you may
use the SUBSCRIPTRANGE ON-condition to specify what action CPL should
take.

ARRAY ARG ident HAS DIFFERENT STRING LENGTH THAN PARM ident

Explanation: You have invoked a procedure, specifying an array
argument with the BIT [VARYING] or CHARACTER [VARYING] data type. The
corresponding parameter has also been declared to be an array, with
the same number of dimensions and the same data type, but the string
length is different.

user Response: Retype the declaration for the parameter, specifying
an--asterlsk for the string length rather than an explicit expression.
CPL will match an asterisk to any string length in the argument.

25-12

CPL ERROR MESSAGES (R)

This error may have occurred because you wish to reference a string
array in a manner different from the way in which the string array was
specified in the DECLARE statement. For example, suppose you wish to
the elements in a CHAR(IO) array as individual characters in a CHAR(l)
array. You may do this using BASED storage and a POINTER variable.
You let the POINTER variable equal the ADDR of the CHARCIO) array, and
then you use the POINTER to qualify a BASED CHAR(I) array, For more
information on this technique, please read the chapter on BASED
storage and POINTERs.

ASSIGNMENT TO ARRAY ident FORBIDDEN

Explanation: An attempt has been made to assign an expression to an
array. Such an assignment is illegal in CPL.

user Response: Replace the assignment statement with a DO-loop which
WIll make the assignment to the array.

ASSIGNMENT TO NAMED CONSTANT ident FORBIDDEN

Explanation: The variable appearing on the left hand side of an
assIgnment IS a NAMED CONSTANT. FILE identifiers and statement labels
are NAMED CONSTANTs.

ATTENTION

Explanation: You have typed a Control-C while CPL was executing a
program.

User Response: If you wish execution to continue when you type the
Control-C character, then you may specify an ON-unit for the ATTENTION
ON-condition. Extreme care must be taken with such ON-units, however,
since careless use of an ATTENTION ON-unit may maKe it impossible for
you to exit from your program.

AUTOMATIC LINE NUMBER EXCEEDS 9999.99

Explanation: A line number generated by CPL, either as a result of
the NUMBER statement or as a result of the NUMBER option of the LOAD
or WEAVE statement, exceeds 9999.99.

System Action: If the line number was generated as a result of a
NUMBER statement, automatic line numbering will be terminated and CPL
will type an asterisk to signify that it is ready for a new command.

If the line number was generated as a result of the NUMBER option of
the LOAD or WEAVE statement, then loading will terminate immediately
and the input file will be closed. CPL will type an asterisk to
signify that it is ready for a new command.

BASED IDENT ident NOT ALLOWED IN DECLARATION

Explanation: CPL restriction. A BASED variable may not appear in the
extent expressions (array bounds or string lengths) of a DECLARE
statement.

25-13

CPL ERROR MESSAGES (R)

This error is detected when CPL
expressions being evaluated.
AUTOMATIC, this occurs when
declaration is invoked; if
statement is executed; and if

has occasion to evaluate the extent
If the variable being DECLAREd is

the program block containing the
it is CONTROLLED, when the ALLOCATE

it is BASED, whenever it is referenced.

User Response: Replace the reference to a BASED variable in the
extent expression with a reference to a non-BASED variable.

If the logic of your program requires that an expression with a BASED
variable be used, then you may accomplish the same thing by replacing
the reference to the BASED variable by a reference to a function
PROCEDURE. The function PROCEDURE can return the value of the BASED
variable.

BASED IDENT ident NOT ALLOWED IN FORMAT STATEMENT

Explanation: CPL restriction. A reference to a BASED variable may
not appear in an expression which appears in a FORMAT statement.
(Note, however, that a BASED variable may appear in the format
specification of a PUT EDIT statement.) This error is detected when
the FORMAT statement is referenced by an R format item reached during
execution of a PUT EDIT statement.

User Response: Replace the reference to a BASED variable in the
FORMAT statement with a reference to a non-BASED variable, or else
move the format specification to the PUT EDIT statement so that a
FORMAT statement will not be needed.

If the logic of your program requires that an expression with a BASED
variable be used in a FORMAT statement, then you may accomplish the
same thing by replacing the reference to the BASED variable by a
reference to a function PROCEDURE. The function PROCEDURE can return
the value of the BASED variable.

BIT STRING ident NOT ALLOCATED

Extlanation: The specified BIT string is not allocated. For more
In ormatlon, pleaie refer to the message "ident" IS NOT ALLOCATED.

BREAKPOINT

Explanation: Your program has reached a statement for which a
prevlous BREAK statement indicated that a breakpoint should be set.

System Action:
It. Instead,
message.

When CPL reaches such a statement it does not execute
it returns to command level with the BREAKPOINT error

~ Response: To continue executing, type the CONTINUE command. If
you wish to continue executing from a different statement, they use
the FROM option of the CONTINUE statement to specify which statement.

25-14

CPL ERROR MESSAGES (R)

CALL TARGET ident IS NOT AN ENTRY

Explanation: The target specified in a CALL statement is not the
statement label on a PROCEDURE statement.

CAN'T ALLOCATE CHANNEL FOR FILE filespec -- ALL CHANNELS IN USE

Explanation: (TOPS-IO only) CPL cannot allocate a channel to open a
new file, since you already have 15 files open.

user ~eseonse: You may use the CLOSE FILES command to close all your
ITIes ~

If you wish execution to continue when this error occurs, then you may
use the UNDEFINEDFILE(filename) 0N~condition to specify what action
CPL should take.

CAN'T RECOGNIZE STATEMENT BEGINNING WITH "string"

Exelanation: You have entered a statement beginning with an illegal
element which CPL does not recognize,

CHARACTER STRING ident NOT ALLOCATED

Explanation: The specified CHARACTER string has not been allocated.
For more information, please refer to the message "ident" IS NOT
ALLOCATED.

CHARACTER/BIT STRING NOT TERMINATED IN INPUT RECORD

Explanation: In a GET LIST operation, CPL has begun reading a data
item which begin$ with a single quote ('), but has read a line feed
character before finding the closing quote.

user Response: Correct the erroneous record in yo~r data file.

CMG -- INVALID TYPE REQUEST

Explanation~ System error. A .CORE GET or FREE request has specified
an illegal storage type, The storage type must be less than or equal
to 5.

user Response; Please save all relevant output and mail it to Digital
Equipment Corporation.

COMPOUND STATEMENTS ("IF" AND "ON") ARE COLLECT ONLY
NUMBER

USE LINE

Explanation: You have typed an IF or ON statement without a line
numbet. All compound statements must have a line number.

Note: The ON statement with the SYSTEM option may be used as a direct
statement, since it is not a compound statement.

25-15

CPL ERROR MESSAGES (R)

CONDITION keyword[(ident)] SIGNALLED

Explanation:
statement.

The specified condition was raised by a SIGNAL

System Action: If an ON-unit is specified for the named condition,
then the ON-unit will be entered. If there is no ON-unit specified,
then execution will continue with the next statement after the message
has been typed.

DATA ERROR FOR FILE "filespec"

Explanation: (TOPS-20 only) System error. Data or device error
occurred while attempting to read or write a file.

User Response: This message usually indicates a potentially serious
hardware error. Notify your system operator of the problem at once.

DATATYPE OF DIMENSIONED ARG ident DIFFERENT FROM PARM ident

Explanation: You have invoked a PROCEDURE with an array argument.
The corresponding parameter is also an array, but with a different
data type.

Note: CHAR NONVARYING is a different data type from CHAR VARYING.
similarly, BIT NONVARYING is a different data type from BIT VARYING.

DDT IS NOT AVAILABLE

Explanation: (TOPS-IO only) You have executed the DDT command, but
DDT 1S not linked into the CPL system you are using.

DECLARE AND DEFAULT STMTS MAY NOT BE "THEN" OR "ELSE" CLAUSES

Explanation: Self-explanatory.

DECLARE AND DEFAULT STMTS MAY NOT BE LABELED

Explanation: Self-explanatory.

DEFAULT RANGE ID "string" MUST HAVE ONLY ONE LETTER

Explanation: The format of the RANGE specification is RANGE (let) or
RANGE(let:let), where "let" is a single letter.

DEVICE "device" IS ILLEGAL

Explanation:
of an OPEN
illegal.

(TOPS-IO only) The device specified in the TITLE option
statement, or in a LOAD, SAVE or WEAVE statement, is

~ Response: If you wish execution to continue when this error
occurs, then you may use the UNDEFINEDFILE(filename) ON-condition to
specify what action CPL should take.

25-16

CPL ERROR MESSAGES (R)

DEVICE "device" IS NOT AVAILABLE TO THIS JOB

Explanation: (TOPS-IO only) The device specified in the TITLE option
of an OPEN statemertt, or .in a LOAD, SAVE or WEAVE statement, is not
available to this job. This will happen if the device is not
shareable and is currently assigned to another job.

User Response: Either specify a diffe+ent device, or contact the
system operator and ask him to make the device av~ilable t9 you.

DIMENSION BOUNDS OF ARG ident DO NOT MATCH THOSE OF PARM ident

Explanation: In a PROCEDURE invocation, you have specified as an
argument an array. The corresponding parameter has also been declared
to be an array, but the array bounds do not match.

User Response: You should change your parameter declaration so that
an--asterlsk is specified for each array bound. If you do that, then
the argument may have any dimension bounds.

It may be that you wish to reference a storage area differently in a
PROCEDURE than you do in your main program. For example, you may wish
to reference a 4x3 array as a 2x6 array in the PROCEDURE. You may qo
this in CPL by means of BASED storage and a POINTER variable. You let
the POINTER variable equal ADDR of the 4x3 array, and you use it to
qualify a BASED 2x6 array. For more information on this technique,
please read the chapter on BASED storage and POINTERs.

DIMENSIONED ARG ident MAY NOT BE PASSED AS SCALAR PARM ident

Explanation: You have invoked a PROCEDURE specifying as an argument
an array, but the matching parameter is a scalar.

User Response: If you wish to pass an array as an argument to a
PROCEDURE, then you must supply an array declaration for the parameter
inside the PROCEDURE.

It may be that you wish to reference a storage are differently in a
PROCEDURE than you do in your main program. For example, you may wish
to reference a CHAR(l} NONVARYING array as a single CHAR scalar in the
PROCEDURE. You may do this in CPL by means of BASED storage and a
POINTER variable. You let the POINTER variable equal the ADDR of the
CHAR(l} array and you use it to qualify a BASED CHAR scalar. For more
information on this technique, please read the chapter on BASED
storage and POINTERs.

DO LOOP VBLE ident IS AN ARRAY

Explanation: A DO-loop variable must be a scalar.
subscripted array element.

DO TARGET VBLE "ident" IS NO LONGER ALLOCATED

It may be a

Explanation: Your program has executed a DO statement with a DO loop
varlable, but sometime since the location of the DO variable was
established, the DO variable has been freed.

25-17

CPL ERROR MESSAGES (R)

This can happen, for example, if your DO loop contains a FREE
statement to free the storage occupied by the DO variable.

For more information, please refer to the message, "ident" IS NOT
ALLOCATED.

DO VBLE ident IS NOT COMPUTATIONAL OR PTR DATA TYPE

Explanation: A DO-loop variable must be FIXED, FLOAT, CHARACTER BIT,
or POINTER.

DOUBLE "ELSE" KEYWORD IS ILLEGAL

Explanation: Self-explanatory.

DOUBLE DEVICE NAME IN FILEID "string"

Explanation: (TOPS-IO only) The file-specification given by the TITLE
option of the OPEN statement or in the WEAVE, SAVE or LOAD statement
contains two device names. A device name is followed in the
file-specification by the character colon (:). You may specify only
one.

User Response: If you wish execution to continue when this error
occurs, then you may use the UNDEFINEDFILE(filename) ON-condition to
specify what action CPL should take.

DOUBLE DOT IN FILEID "string"

Explanation: (TOPS-IO only) There are two dots in the
file-specification appearing in the TITLE option of an OPEN statement
or in the LOAD, SAVE or WEAVE statement. The file-specification may
contain only a single dot. This dot appears between the filename and
the filename extension.

User Response: I(you wish execution to continue when this error
occurs, then you may use the UNDEFINEDFILE(filename) ON-condition to
specify what action CPL should take.

DOUBLE FILENAME IN FILEID "string"

Explanation: (TOPS-IO only) Two filenames appeared in the
file-specification in the TITLE option of the OPEN statement or in the
LOAD, SAVE or WEAVE statement.

User Response: If you wish execution to continue when this error
occurs, then you may use the UNDEFINEDFILE(filename) ON-condition to
specify what action CPL should take.

DOUBLE PPN SPECIFIED IN FILEID "string"

Explanation: (TOPS-IO only) Two project-programmer numbers appear in
the file-specification in the TITLE option of the OPEN statement or in
the WEAVE, SAVE or LOAD statement.

25-18

CPL ERROR MESSAGES (R)

~ Response: If you wish execution to continue when this error
occurs, then you may use the UNDEFINEDFILE(filename) ON-condition to
specify what action CPL should take.

DTA PROTECTION FAILURE OR DIRECTORY FULL FOR filespec

Explanation: (TOPS-IO only) CPL is unable to open an OUTPUT file on
the desired DECtape because either the directory is full or the device
is write-protected.

~ Response: If you wish execution to continue when this error
occurs, then you may use the UNDEFINEDFILE(filename) ON-condition to
specify what action CPL should take.

DUMMY I/O MODULE FILRW

Explanation: The REWRITE statement is not implemented.

DUMMY ROUTINE NAME

Explanation: The "name" is the name of a routine which has not been
implemented in CP~. You have tried to use a feature of CPL which is
only partially implemented.

User Response: Do not use unimplemented features of CPL.

DUPLICATE KEYWORD "keyword"

Explanation: Either the statement you have typed in uses the same
keyword twice, or a declaration specifies the same attribute twice for
the same identifier.

EKDECL -- INVALID DCLOP VALUE

Explanation: System error.
contalns an invalid value.

The DCLOP field of the current BSB

User Response: Save all relevant output and mail it to Digital
Equlpment Corporation.

END LABEL ident CANNOT BE MATCHED

Explanation: Your program contains a statement of the form
"END label," and CPL is unable to match the label. This can happen
either if there is no DO, PROC or BEGIN statement with the specified
label, or if all such statements are already matched by different END
statements.

END OF FILE ON filespec

Explanation: A GET or READ operation has failed because the end of
the flle has been reached.

25-19

CPL ERROR MESSAGES (R)

User Response: If you wish execution to continue when this error
OCCUrs, Ehen you may use the ENDFILE(filename) ON-condition to specify
what action CPL should take.

END OF PROGRAM

Explanation: Program execution has completed. You have executed the
last statement of the program.

END OF STRING ON GET STRING OPERATION

Explanation: You have executed a GET LIST statement with the STRING
option, and the end of the string was reached before the entire data
list was satisfied.

User Response: This error will occur if you forget to insert a blank
at the end of the input string. A GET LIST operation is not satisfied
until the blank or comma following the end of the data item has been
read. If this is the reason for the error, then concatenate the
expression in the STRING option with a blank.

EOPIPL -- CAN'T HANDLE 10 OPERATION

Explanation: System error.

User Response: Save all relevant output and mail it to Digital
Equlpment Corporation.

EOPSS -- CANNOT HANDLE ARRAY ident

Explanation: The 5MB operator following the CCOSS operator and the
subscrlpt count is not recognized by the EOPSS routine.

User Response: This is a system error. Please save all relevant
output and mail it to Digital Equipment Corporation.

ERROR IN **

Explanation: An error was detected in attempting to raise a number to
a FLOAT power.

An error will be detected if you attempt to raise 0 to a value which
is zero or negative.

ERROR IN FUNCTION ident

Explanation: An error has occurred in the computation
mathematical built-in function.

The following errors will give rise to this error message:

of

1. ASIN or ACOS has an argument greater than 1 in magnitude.

25-20

a

CPL ERROR MESSAG'E,S (R)

2. SQRT has a negative argument.

3. The argument to SINH or COSH exceeds, in absolute value, the
value of 88.029+LOG(2).

4. Argument of EXP exceeds 88.029 or is less than -89.41.

5. Argument of LOG, LOG2 or LOGIO is negative.

ERROR IN OPEN UUO FOR FILE filespec

Explanation: (TOPS-IO only) System er ror . An unexpected error
occurred in an OPEN UUO.

~ Reseonse: Save all relevant output and send to Digital Equipment
CorporatIon.

If you wish execution to continue when this error occurs, then you may
use the UNDEFINEDFILE(filename) ON-condition to specify what action
CPL should take.

ERROR READING UFD RIB OR FILE RIB FOR FILE filespec

Explanation: (TOPS-IO only) One of the following has occurred while
CPL was trYIng to open a file:

1. A hardware-detected device or data error was detected while
reading the UFD RIB or UFD data block.

2. A software-detected data inconsistency error was detected
while reading the UFD RIB or file RIB.

EXCBIF -- FUNCTION ident IS NOT IMPLEMENTED

Explanation: The specified built-in function has not been implemented
In CPL.

EXCLUP -- CAN'T HANDLE 5MB OPERATOR

Explanation: The 5MB contains
routInes cannot handle. This
partially implemented feature
documentation.

an
will

which

operator which the execution
happen if you attempt to use a
is not described in the

User Response: If you have used an undocumented feature, then you
should remove that use from your progtam.

If you are using only documented features, then this message indicates
a system error. Please save all relevant output and send it to
Digital Equipment Corporation.

25-21

CPL ERROR MESSAGES (R)

EXCLUP -- CAN'T HANDLE STATEMENT TYPE

Explanation: The statement type cannot be handled by the execution
routlnes. This will happen if the statement type is only partially
implemented.

~ Response: Remove all uses of undocumented statements from your
program.

EXCLUP -- INVALID ACTION CODE RETURNED FROM SUBROUTINE

Explanation: System error. A subroutine called by EXCLUP returned an
lnvalld value in the AACT argument.

User Response: Save all relevant output and mail to Digital Equipment
Corporatlon.

EXCLUP -- INVALID VALUE IN DCLOP IN CALL TO EXCLUP

Explanation: System error. An invalid value was found in the DCLOP
fleld of the current BSB.

User Reseonse: Save all relevant output and mail to Digital Equipment
Corporatlon.

EXPONENT MUST BE ONE OR TWO DLGITS

Explanation: In entering an E-type floating
exponent fleld must contain one or two digits.
is illegal.

FIELD TOO NARROW IN F FORMAT ITEM

point number, the
For example, 2.3E123

Explanation: Let wand d be the first two arguments to the F format
ltem, and let v be the value being printed. Then the following
inequalities must.be satisfied:

1. If d=O and v>=O then w must satisfy w>O.

2. If d=O and v<O then w must satisfy w>l.

3. If d>O and v>=O then w must satisfy w>d+l.

4. If d>O and v<O then w must satisfy w>d+2.

This error message will appear if the appropriate inequality is not
satisfied.

~ Response: Increase the field size in the F format item.

FIELD WIDTH TOO NARROW IN E FORMAT ITEM

Explanation: The width argument to the E format item is too narrow.

25-22

CPL ERROR MESSAGES (R)

Here is how to compute the minimum field width needed.

1. The minimum size is 9+4, where s is the number of significant
digits -- the value specified in the third argument.

2. If s=d, where d is the second argument, then add 1.

3. If d>O then add 1.

4. If the data value is negative, then add 1.

If the first argument to E is smaller than the above quantity, then
this error message will be typed.

User Response: Increase the size of, the first argument to the E
format ltem.

FILE filespec IS keyword keyword INSTEAD OF STREAM OUTPUT

Explanation: The file specified in a PUT operation must be opened
witfi the attributes OUTPUT and STREAM.

~~ Response: There are several ways in which this error can be
made:

1. If you have been reading a file using the same file
identifier, you must specify the CLOSE statement for the file
before you can start to write to it. Keep in mind that an
OPEN statement 1S a "no-operation" if the file variable is
already open, even with different attributes.

2. It is illegal to perform WRITE and PUT operations on the same
output file.

3. The declaration for the file variable may contain attributes
which conflict with OUTPUT and STREAM. In this case you
should change your file declaration.

4. It is legal to be doing GETs and PUTs to the same disk file
provided that you are using different file variables in CPL.
If you are doing GETs and PUTs to the same disk file, then
use two different variables and open them separately for
INPUT and OUTPUT using the TITLE option of the OPEN
statement.

FILE filespec IS ALREADY BEING MODIFIED

Explanation: (TOPS-IO only) A file cannot be opened for output if
either this job or another job is already writing that file.

User Response: If you wish execution to continue when this error
occurs, then you may use the UNDEFINEDFILE(filename) ON-condition to
specify what action CPL should take.

25-23

CPL ERROR MESSAGES (R)

FILE filespec NOT FOUND

Explanation: (TOPS-IO only) An attempt has been made to open a file
for INPUT, but the file was not found.

If you do not open the file explicitly with the TITLE option of the
OPEN statement, then CPL supplies the default file-specification of
DSK:name.DT, with your own project-programmer number.

User Response: If you wish execution to continue when this error
occurs, then you may use the UNDEFINEDFILE(filename) ON-condition to
specify what action CPL should take.

FILE NAME MISSING FOR FILE filespec

Explanation: (TOPS-IO only) A file-specification given by the TITLE
option of the OPEN statement or in the LOAD, SAVE or WEAVE statement
does not specify a filename, and the device requires a LOOKUP or
ENTER.

User Response: If you wish execution to continue when this error
occurs, then you may use the UNDEFINEDFILE(filename) ON-condition to
specify what action CPL should take.

FILE NOT "INPUT" OR "UPDATE"

Explanation: A READ operation was attempted on a file open for
OUTPUT.

FILE NOT "OUTPUT" OR "UPDATE"

Explanation: A WRITE operation was attempted on a file open for
OUTPUT.

FILE NOT OPEN IN "RECORD" MODE

Explanation: A READ or wRITE operation was attempted on a file opened
with the STREAM attribute.

CPL does not allow you to perform RECORD and STREAM operations on the
same file.

FILE VARIABLE ident IS NOT A FILE

EX§lanation: The identifier appearing in the FILE option of an OPEN,
CL SE, GET, PUT, READ, WRITE or CLOSE statement has not been declared
to have the FILE attribute.

FILJFN -- JSYS ERROR: DEVICE FIELD NOT IN A VALID POSITION

Explanation: (TOPS-20 only) The file-specification given by the TITLE
optlon of the OPEN statement or in the LOAD, WEAVE or SAVE statement
contains a misplaced device field.

25-24

CPL ERROR MESSAGES (R)

User Response: Respecify the file-specification so that the device
ITeId 1S glven first.

If you wish execution to continue after this error occurs, then you
may use the UNDEFINEDFILE ON-condition to specify what action CPL
should take.

FILJFN -- JSYS ERROR: DEVICE IS NOT AVAILABLE TO THIS JOB

Explanation: (TOPS-20 only)You are attempting to open a file, but the
device you have specified is not shareable, and it is in use by
another user or cannot be assigned.

User Response: Contact your system operator and arrange to have the
dev1ce ass1gned to your job.

If you wish execution to continue after this error occurs, then you
may use the UNDEFINEDFILE ON-condition to specify what action CPL
should take.

FILJFN -- JSYS ERROR: DEVICE IS NOT ON-LINE

Explanation: (TOPS-20 only) You are attempting to open a file, but
the deV1ce you have specified is either off-line or not ready.

~ Response: Ask the operator to put the device on-line.

If you wish execution to continue after this error occurs, then you
may use the UNDEFINEDFILE ON-condition to specify what action CPL
should take.

FILJFN -- JSYS ERROR: DIRECTORY ACCESS PRIVILEGES REQUIRED

Explanation: (TOPS-20 only) You do not have the privileges necessary
to access the directory specified in the TITLE option of the OPEN
statement, or in the LOAD, SAVE or WEAVE statement.

User Response: If you wish execution to continue after this error
OCCUrs, then you may use the UNDEFINEDFILE ON-condition to specify
what action CPL should take.

FILJFN -- JSYS ERROR: DIRECTORY FIELD NOT IN A VALID POSITION

Explanation: (TOPS-20 only) The file-specification given by the TITLE
option of the OPEN statement or in the LOAD, WEAVE or SAVE statement
contains a misplaced directory field.

~ Response: If you wish execution to continue after this error
occurs, then you may use the UNDEFINEDFILE ON-condition to specify
what action CPL should take.

FILJFN -- JSYS ERROR: DIRECTORY FULL

Explanation: (TOPS-20 only) You have attempted to open a file for
OUTPUT, either explicitly with an OPEN statement, or implicitly with a
SAVE, PUT or WRITE statement, but the target, directory has no room
left.

25-25

CPL ERROR MESSAGES (R)

User Response: You must use the "MONITOR" command to return to
command level in the operating system, and then you must delete some
files to make room in your directory.

If you wish execution to continue after this error occurs, then you
may use the UNDEFINEDFILE ON-condition to specify what action CPL
should take.

FILJFN -- JSYS ERROR: DIRECTORY TERMINATING DELIMITER IS NOT PRECEDED
BY A VALID BEGINNING DELIMITER

Explanation: (TOPS-20 only) The file-specification given by the TITLE
optlon of the OPEN statement, or in the LOAD, WEAVE or SAVE statement,
is missing the left angle bracket which defines the start of a TOPS-20
directory field.

User Response: If you wish execution to continue after this error
occurs, then you may use the UNDEFINEDFILE ON-condition to specify
what action CPL should take.

FILJFN -- JSYS ERROR: FIELD CANNOT BE LONGER THAN 39 CHARACTERS

Explanation: (TOPS-20 only) The file-specification given by the TITLE
optlon of the OPEN statement, or in the LOAD, WEAVE or SAVE statement,
contains a directory, name, or type field that is too long.

User Response: If you wish execution to continue after this error
OCCUrs, then you may use the UNDEFINEDFILE ON-condition to specify
what action CPL should take.

FILJFN -- JSYS ERROR: FILE NAME MUST NOT EXCEED 6 CHARACTERS

Explanation: (TOPS-20 only) The file-specification given by the TITLE
optlon of the OPEN statement, or in the LOAD, SAVE or WEAVE statement,
has a name field longer than six characters.

User Response: If you wish execution to continue after this error
occurs, then you may use the UNDEFINEDFILE ON-condition to specify
what action CPL should take.

25-26

CPL ERROR MESSAGES (R)

FILJFN -- JSYS ERROR: FILE NOT FOUND BECAUSE OUTPUT-ONLY DEVICE WAS
SPECIFIED

Explanation: (TOPS-20 only) You are attempting to open a file for
INPUT, but the LOAD statement or the TITLE option of the OPEN
statement specifies a device name which is valid for output only.

Note that in an OPEN statement, if you don't specify whether a file is
INPUT or OUTPUT, then INPUT is assumed.

£!!! ResEonse: If you wish execution to continue after this error
occurs, then you may use the UNDEFINEDFILE ON-condition to specify
what action CPL should take.

FILJFN -- JSYS ERROR: FILE NOT FOUNQ

Explanation: (TOPS-20 only) You have attempted to open a file for
INPUT, either explicitly with an OPEN statement, or implicitly with a
GET, READ or LOAD statement, and the file does not exist.

Note that if your OPEN statement does not specify either INPUT or
OUTPUT, then INPUT is assumed.

User Response: If you wish execution to continue after this error
OCCUrs, then you may use the UNDEFINEDFILE ON-condition to specify
what action CPL should take.

FILJFN -- JSYS ERROR: FILE TYPE MUST NOT EXCEED 3 CHARACTERS

Explanation: (TOPS-20 only) The file-specification given by the TITLE
option of the OPEN statement, or in the LOAD, WEAVE or SAVE statement,
contains a type field which is longer than three characters.

~ Response: If you wish execution to continue after this error
occurs, then you may use the UNDEFINEDFILE ON-condition to specify
what action CPL should take.

FILJFN -- JSYS ERROR: FILE WAS EXPUNGED

Explanation: (TOPS-20 only) You are attempting to open a file for
input, either implicitly with the OPEN statement, or explicitly with
the GET, READ, LOAD or WEAVE statement, but the file has been entirely
deleted from the system.

~ Response: You will have to find a way to recreate the file.

If you wish execution to continue after this error occurs, then you
may use the UNDEFINEDFILE ON-condition to specify what action CPL
should take.

FILJFN -- JSYS ERROR: FILENAME WAS NOT SPECIFIED

Explanation: (TOPS-20 only) The file-specification given by the TITLE
optIon of the OPEN statement, or in the LOAD, WEAVE or SAVE statement,
does not contain a name field. The name field may be omitted only for
a non-directory device, such as the line printer or card reader.

25-27

CPL ERROR MESSAGES (R)

User Response: If you wish execution to continue after this error
occurs, then you may use the UNDEFINED~ILE ON-condition to specify
what action CPL should take.

FILJFN -- JSYS ERROR: INTERNAL FORMAT OF DIRECTORY IS INCORRECT

Explanation: (TOPS-20 only) System error. In attempting to open a
file, either explicitly with the OPEN statement, or explicitly with
the GET, PUT, READ, WRITE, LOAD, SAVE, or WEAVE statements, the
operating system discovered an illegal field in the disk directory.

User Res~onse: Inform .your system operator immediately, as this
usually lndlcates a serlOUS error.

FILJFN -- JSYS ERROR: INVALID CHARACTER IN FILENAME

Explanation: (TOPS-20 only) The file-specification given by the TITLE
optlon of the OPEN statement, or in the LOAD, SAVE or WEAVE statement,
has a file name field which contains an illegal character.

User Response: Respecify the file-specification so that the name
fleld contains only letters and digits.

If you wish execution to continue after this error occurs, then you
may use the UNDEFINEDFILE ON-condition to specify what action CPL
should take.

FILJFN -- JSYS ERROR: JOB STORAGE BLOCK FULL

Explanation: (TOPS-20 only) System error. You have attempted to open
a file, but the your job could not obtain any free space. Normally
this could happen only if you have more than 60 files open.

User Response: Bring this problem to the attention of your system
analyst.

FILJFN -- JSYS ERROR: LOGICAL NAME LOOP DETECTED

Explanation: (TOPS-20 only) You have used two or more DEFINE commands
to the TOPS-20 monitor to define in a circular manner the device name
in the file you are trying to open.

User Response: Redefine the logical name using the appropriate
monitor commands.

If you wish execution to continue after this error occurs, then you
may use the UNDEFINEDFILE ON-condition to specify what action CPL
should take.

FILJFN -- JSYS ERROR: MORE THAN ONE NAME FIELD IS NOT ALLOWED

Explanation: (TOPS-20 only) The file-specification given by the TITLE
optlon of the OPEN statement, or in the LOAD, WEAVE or SAVE statement,
contains more than one file name field.

25-28

CPL ERROR MESSAGES (R)

User Response: If you wish execution to continue after this error
OCCUrs, then you may use the UNDEFINEDFILE ON-condition to specify
what action CPL should take.

FILJFN -- JSYS ERROR: NO JFNS AVAILABLE

Explanation: (TOPS-20 only) You are attempting to open a file, but
you have already opened the system-defined maximum number of files
permitted for your job. (The maximum number of JFN's is gteater than
60.)

User Reseonse: You must issue CLOSE statements to close some of the
!TIes you have opened, before you can open another one. This will
require modification to your program. You may use the CLOSE FILES
command to close all your open files simultaneously.

If you wish execution to continue after this error occurs, then you
may use the UNDEFINEDFILE ON-condition to specify what action CPL
should take.

FILJFN -- JSYS ERROR: NO SUCH DEVICE

Explanation: (TOPS-20 only) The file-specification given by the TITLE
optlon of the OPEN statement, or in the LOAD, WEAVE or SAVE statement,
specifies a device name which does not exist in the system.

User Response: If you wish execution to continue after this error
occurs, then you may use the UNDEFINEDFILE ON-condition to specify
what action CPL should take.

FILJFN -- JSYS ERROR: NO SUCH DIRECTORY

Explanation: (TOPS-20 only) The file-specification given by the TITLE
optlon of the OPEN statement or in the LOAD, WEAVE or SAVE statement,
specifies a directory which does not exist.

User Response: If you wish execution to continue after this error
occurs, then you may use the UNDEFINEDFILE ON-condition to specify
what action CPL should take.

FILJFN -- JSYS ERROR: NO SUCH FILE TYPE

Explanation: (TOPS-20 only) You are attempting to open a file for
INPUT, but the file type for the specified file does not exist.

User Response: If you wish execution to continue after this error
OCCUrs, then you may use the UNDEFINEDFILE ON-condition to specify
what action CPL should take.

FILJFN -- JSYS ERROR: NO SUCH FILENAME

Explanation: (TOPS-20 only) You are attempting to open a file for
INPUT, but there is no existing file with the specified filename.

25-29

CPL ERROR MESSAGES (R)

User Response: If you wish execution to continue after this error
OCCUrs, ERen- you may use the UNDEFINEDFILE ON-condition to specify
what action CPL should take.

FILJFN -- JSYS ERROR: UNDEFINED ATTRIBUTE IN FILE SPECIFICATION

~lanation: (TOPS-20 only) The file-specification given by the TITLE
option or-the OPEN statement, or in the LOAD, WEAVE or SAVE statement,
contains an unrecognizable expression in the TOPS-20 file attribute
field.

~.Resp~ The following are the legal values for the file
attribute f~eld:

1. P ("protection"), followed by six octal digits (this is the
default)

2. A ("account"), followed by an account ID

3. T ("temporary"), for a temporary file

If you wish execution to continue after this error occurs, then you
may use the UNDEFINEDFILE ON-condition to specify what action CPL
should take.

FILRD -- NO DIRECT OR WORD

Explanation: DIRECT and WORD modes are not implemented.

FILSOO -- OPEN FAILURE: DEVICE ASSIGNED TO ANOTHER JOB

Explanation: (TOPS-20 only) The device specified in the
IiIe-specT!ication in the TITLE option of the OPEN statement, or in
the LOAD, WEAVE or SAVE statement, is currently unavailable because it
is not shareable and it is assigned to another user.

~ Response: If you wish execution to continue after this error
occurs, then you may use the UNDEFINEDFILE ON-condition to specify
what action CPL should take.

FILSOO -- OPEN FAILURE: DEVICE IS NOT ON-LINE

Explanation: (TOP5-20 only) The device specified in the TITLE option
of the OPEN statement, or in the LOAD, WEAVE or SAVE statement, is
off-line or not ready.

User Response: Ask the system operator to make the device online and
ready.

If you wish execution to continue after this error occurs, then you
may use the UNDEFINEDFILE ON-condition to specify what action CPL
should take.

25-30

CPL ERROR MESSAGES (R)

FILSOO -- OPEN FAILURE: DEVICE IS WRITE-LOCKED

Explanation:
OUTPUT, but
write on it.

(TOPS-20 only) You have attempted to open a file for
the output device is "wr i te-locked" and so you cannot

User Response: This error occurs most frequently with tape devices.
You must ask the system operator to write-enable the device.

If you wish execution to continue after this error occurs, then you
may use the UNDEFINEDFILE ON-condition to specify what action CPL
should take.

FILSOO -- OPEN FAILURE: DISK QUOTA EXCEEDED

Explanation: (TOPS-20 only) You are attempting to open a file for
OUTPUT, but your disk file quota has been exceeded.

User Response: You must use the MONITOR command to return to monitor
level, and delete some files before you can create any new files.

If you do not wish to delete any files, then you must contact your
system administrator and ask him to increase your file space quota.

If you wish execution to continue after this error occurs, then you
may use the UNDEFINEDFILE ON-condition to specify what action CPL
should take.

FILSOO -- OPEN FAILURE: ENTIRE PUBLIC DISK FULL

Explanation: (TOPS-20 only) You have attempted to open a file for
OUTPUT-,-but there is no space left on the disk pack.

User Response: This is usually a serious system problem, since no
users will be able to create any new files until more disk space can
be found. Therefore, you should notify your system operator of the
problem.

If you have several disk packs available to you, then you may be able
to get around the problem by specifying a different disk for your
output file.

If you wish execution to continue after this error occurs, then you
may use the UNDEFINEDFILE ON-condition to specify what action CPL
should take.

FILSOO -- OPEN FAILURE: FILE DOES NOT EXIST

Explanation: (TOPS-20 only) You are attempting to open a file for
INPUT, but the following problem has occurred: The file has been
created, but has not yet been closed.

This can happen if your CPL program attempts to read a file that it
has just created, but it fails to issue a CLOSE statement to close the
file after creating it.

25-31

CPL ERROR MESSAGES (R)

User Response: Modify your program so that it executes a CLOSE
statement-for-the file identifier for the newly created file.

If you wish execution to continue after this error occurs, then you
may use the UNDEFINEDFILE ON-condition to specify what action CPL
should take.

FILSOO -- OPEN FAILURE: FILE HAS BAD INDEX BLOCK

Explanation: (TOPS-20 only) System error. You have attempted to open
a file, but your disk structure contains a bad index block.

User Response:
Gisk hardware
immediately.

This problem usually indicates a potentially serious
error. Report this problem to your system operator

FILSOO -- OPEN FAlLURE: FILE IS ALREADY OPEN

Explanation: (TOPS-20 only) CPL system error. CPL issued a JSYS to
open a control block which was already open.

User Response: Save all relevant output and mail to Digital Equipment
Corporation.

If you wish execution to continue after this error occurs, then you
may use the UNDEFINEDFILE ON-condition to specify what action CPL
should take.

FILSOO -- OPEN FAILURE: INVALID SIMULTANEOUS ACCESS

Explanati~ (TOPS-20 only) One of the following has happened:

1. You have attempted to open a file for output, but the file is
already open for output either by your job or by another job.

2. You have attempted to open a file on a non-directory device,
such as a tape device, but there is already a file open on
that device.

User Response: This message usually indicates that you have forgotten
to execute a CLOSE statement before attempting to open the same file
using a different file variable. If this is the case, then modify
your program by adding such a CLOSE statement.

If you wish execution to continue after this error occurs, then you
may use the UNDEFINEDFILE ON-condition to specify what action CPL
should take.

FILSOO -- OPEN FAILURE: NO ROOM IN JOB FOR LONG FILE PAGE TABLE

Explanation: (TOPS-20 only) System error. You have attempted to open
a file, but the TOPS-20 operating system has insufficient free space
for your job in the page table.

25-32

CPL ERROR MESSAGES (R)

User Response: Notify your system analyst.

FILSOO -- OPEN FAILURE: READ ACCESS REQUIRED

Explanation: (TOPS-20 only) You are attempted to open a file for
INPUT, but your job does not have the access privileges necessary to
read the file you have specified.

User Response: If you wish execution to continue after this error
occurs, then you may use the UNDEFINEDFILE ON-condition to specify
what action CPL should take.

FILSOO -- OPEN FAILURE: WRITE ACCESS REQUIRED

Explanation: (TOPS-20 only) You have attempted to open a file for
OUTPUT, but your job does not have the access privileges necessary to
write-access the file you have specified.

User Response: If you wish execution to continue after this error
occurs, then you may use the UNDEFINEDFILE ON-condition to specify
what action CPL should take.

FILWR -- NO DIRECT OR WORD

Explanation: DIRECT and WORD modes are not implemented.

FIXEDOVERFLOW OR FLOAT OVERFLOW OR UNDERFLOW

Explanation: Your program is attempting to compute a value which lies
outside the range of values permitted by the DECsystem-10/20 hardware.
The terms used in the error message have the following meanings:

1. FIXEDOVERFLOw occurs when a computation on FIXED values
exceeds, in absolute value, the maximum integer which the
DECsystem-10/20 can compute. This value is equal to 2**35-1,
or 34359738367.

2. FLOAT OVERFLOW occurs when a computation on FLOAT values
exceeds, in absolute value, the maximum floating point value
which the DECsystem-10/20 hardware can compute. This value
is equal to 2**127, or 1.70l4ll8E+38.

3. FLOAT UNDERFLOW occurs when a computation on FLOAT values
causes the exponent fields of a floating point value to
become less than the minimum value which the DECsystem-10/20
hardware permits. The mInImum positive value which the
hardware permits is 2**-129, or 1.4693679E-39.

This error can occur in a variety of circumstances.

If the message occurs when you type in a statement, then probably one
of the following has happened:

1. You have typed in a FIXED or FLOAT constant which is out of
the hardware's range, as described above.

25-33

CPL ERROR MESSAGES (R)

2. You have typed in array bounds or string lengths which are so
large that the computation of the required storage caused a
computational error. (Of course, in this case, there would
not have been enough storage to allocate the data block
anyway.) \

If the message occurs during execution of a program, then one of the
following may have occurred:

1. Some numeric computation exceeded the hardware's range, as
described above.

2. A constant which was converted as the result of a GET LIST
statement was too large.

3. A constant appearing in a CHARACTER string, which was used in
a CHARACTER to FIXED or CHARACTER to FLOAT conversion was too
large.

4. Your program contains variables in the extent expressions
(array bounds or string lengths) of a DECLARE statement, and,
at the time that CPL attempts to evaluate the extent
expressions (either because of block entry for AUTOMATIC
storage identifier or because of an ALLOCATE statement for
CO~TROLLED storage or because of any reference for BASED
storage) the computation of the data block size resulted in
an excessively large intermediate value. (Of course, in this
case, there would not have been enough storage to allocate
the data block anyway.)

It is also possible that this message will occur if you pass an
illegal argument to a built-in function; but usually an argument
error to a built-in function will cause the message "ERROR IN FUNCTION
ident."

FIRST ARG OF FCN ident MUST BE A SIMPLE OR SUBSCRIPTED ID

Explanation: The first argument of the specified built-in function or
pseudo-varIable must be a simple identifier or a subscripted
identifier. It may not be an expression. For example, the SUBSTR
pseudo-variable has this requirement.

FORMAT STATEMENT MUST BE LABELED

Explanation: A FORMAT statement must have a statement label.

FROM/INTO VBLE ident MAY NOT BE CHAR VAR ARRAY FOR ASCII READ/WRITE

Explanation: The variable specified in the FROM option of the WRITE
statement or the INTO option of the READ statement may be a CHARACTER
VARYING or NONVARYING scalar, or it may be a CHARACTER NONVARYING
array. It may not be a CHARACTER VARYING array.

25-34

CPL ERROR MESSAGES (R)

FROM/INTO VBLE ident MUST BE CHAR FOR ASCII READ/WRITE

Explanation: The variable specified in the FROM option of the WRITE
statement or the INTO option of the READ statement must be CHARACTER
or CHARACTER VARYING.

FUNCTION ident MUST HAVE 3 TO 5 ARGS

Explanation: The FLTED function requires between 3 and 5 arguments.

FUNCTION ident MUST HAVE AT LEAST 2 ARGUMENTS

Explanation: The MIN and MAX built-in functions must have at least
two arguments.

GET LIST ITEM ident HAS NON-COMPUTATIONAL DATA TYPE

Explanation: Each item appearing in a GET LIST data list must be
FIXED, FLOAT, CHAR or BIT.

GET LIST ITEM ident IS A NAMED CONSTANT

Explanation: An item appearing in a GET LIST data list may not be a
NAMED CONSTANT. Statement label and FILE identifiers are examples of
NAMED CONSTANTS.

GET LIST ITEM ident IS NOT A SCALAR

Explanation: It is illegal to specify an array as a GET LIST data
item.

GO TO TARGET ident IS NOT A LABEL

Explanation: The target of the GOTO statement is not a statement
label.

Note that you may not GOTO into a separate block from outside that
block. Therefore, this message will also be typed if the target is a
statement label for a statement which appears in a block which does
not contain the GOTO statement.

HARD DEVICE-DETECTED ERROR FOR FILE filespec -- FILE STATUS code

Explanation: (TOPS-IO only) Hard device detected error (IO.DER),
other than data parity error. This is a search, power supply, or
channel memory parity error. The device is in error rather than the
data on the medium. However, the data read into core or written on
the device is probably incorrect.

25-35

CPL ERROR MESSAGES (R)

ID ident DCLID "PARAMETER" BUT NOT IN A PROC STATEMENT

Explanation: Your program contains a DECLARE statement which
specifies the PARAMETER attribute for an identifier. Either the
DECLARE statement in not immediately inside a PROCEDURE or else it is
immediately inside a PROCEDURE but the identifier does not appear in
the parameter list of the PROCEDURE statement.

ID ident HAS "VARYING" SPECIFIED WITHOUT "CHAR" OR "BIT"

Explanation: The VARYING attribute may be specified only if CHARACTER
or BIT is also specified.

ID ident HAS VARIABLE EXTENT EXPRESSIONS IN OUTER BLOCK

Explanation: Your program contains a DECLARE statement for AUTOMATIC
storage with variable extent expressions, but the declaration is not
inside a a BEGIN/END block, a PROCEDURE/END block, or an ON-unit. (An
extent expression is one which is a string length in the CHARACTER or
BIT attribute, or which is an array bound.)

User Respo~ If you wish to use variable string
bounds, then you must specify them differently.
techniques you can use:

lengths or array
There are several

1. Use the identifier only inside some PROCEDURE or BEGIN block,
by placing the DECLARE statement inside that block. Of
course, you will not be able to access that variable outside
the block.

2. If you want to use the variable in your whole program, then
you can place your whole program inside a BEGIN/END block.
Then the DECLARE statement will be legal.

3. A simpler technique is to give the variable th~ CONTROLLED
storage class attribute. (AUTOMATIC is the default.) If you
do that, then you may use variables in your extent
expressions. You will have to explicitly allocate that
storage for the variable by means of the ALLOCATE statement,
and you will have to free it using the FREE statement.

4. You may also used BASED storage and POINTER variables to have
the same effect, as described in the chapter on BASED storage
and POINTER variables. BASED storage is functionally more
powerful than CONTROLLED storage for this purpose, but it is
less efficient.

ID ident IS NOT A BUILTIN FUNCTION

Explanation: You have attempted to DECLARE the specified
with the BUILTIN attribute, but that identifier is
built-in function in CPL.

25-36

identifier
not a legal

CPL ERROR MESSAGES (R)

ID ident IS NOT A LEGAL PSEUDO-VARIABLE

Explanation: The specified built-in function may not appear as a
pseudo-varlable on the left-hand side of an assignment statement.

ID ident IS NOT AN ARRAY OR FUNCTION

Explanation: The specified identifier is followed by a parenthesized
list of expressions, but it not an array or a legal CPL function.

IDENTIFIER LONGER THAN 31 CHARACTERS

Explanation: You have entered a statement containing an identifier
longer than 31 characters.

ILLEGAL ARGUMENT TO IGNORE OPTION

Explanation: The argument of the IGNORE option of the READ statement
may not be negative.

ILLEGAL CHAR "char" IN BIT STRING

Explanation: The specified character is illegal for this type of bit
string constant.

A bit string constant has the format •... 'radix, where the "radix" is
one of B, Bl, B2, B3 or B4. The characters that may appear between
the single quotes depend upon the radix, as follows:

Radix Number system

B or Bl Binary
B2 Base 4
B3 Octal
B4 Hexadecimal

ILLEGAL CHARACTER "char"

Legal digits

0,1
0,1,2,3
0-7
0-9, A-F

Explanation: The specified character may not appear in a CPL
statement except in a character string constant.

ILLEGAL CHARACTER "char" IN FILEID "string"

Explanation: (TOPS-IO only) The specified character may not appear in
a file-specification.

~ Response: If you wish execution to continue when this error
occurs, then you may use the UNDEFINEDFILE(filename) ON-condition to
specify what action CPL should take.

25-37

CPL ERROR MESSAGES (R)

ILLEGAL DATA TYPE FOR PUT LIST ITEM

Explanation: The data type of a PUT LIST or PUT EDIT expression must
be FIXED, FLOAT, CHAR or BIT.

25-38

CPL ERROR MESSAGES (R)

ILLEGAL DEBUG OPTION

Explanation: The first argument of the DEBUG statement must be in the
range 1 to 5. (The DEBUG statement is not useful to most programmers.
It is used by system programmers who are debugging the CPL system
itself.)

ILLEGAL DECIMAL POINT IN EXPONENT

Explanation: In an E-type floating point constant, there may be only
one decimal point, and that must appear before the E. EXAMPLE:
1.289E5 is a legal constant, equal to 128900.

ILLEGAL INSTRUCTION EXECUTED AT LOCATION "location"

Explanation: (TOPS-20 only) CPL system error. CPL has executed an
illegal instruction at the specified location.

User Response: Save all relevant output and mail to Digital Equipment
Corporation.

IMPROPER MODE FOR FILE filespec -- FILE STATUS code

Explanation: (TOPS-IO only) An IN or OUT UUO failed, with the
specified file status.

User Response: This is a system error. Save all relevant output and
send to Digital Equipment Corporation.

INTEGER DIVISION NOT ALLOWED

Explanation: CPL restriction: You may not divide two variables or
expressions with the FIXED attribute.

User Response: There are several methods you can use to accomplish
the same result:

1. Make one of the expressions FLOAT. For example, replace 1/2
with 1/2.0. In this case, the FLOAT denominator will cause
CPL to convert the numerator to FLOAT before performing the
division.

2. Use the DIVI or DIVF built-in functions. These functions are
not in the ANSI standard, but they have been provided in CPL
to because integer division is not available.

DIVI(I,J) takes the quotient of the FIXED values I and J, and
returns the truncated quotient.

DIVF(I,J) causes the two arguments to be converted to FLOAT.
FLOAT division is performed on the converted arguments and
the FLOAT quotient is returned.

25-39

CPL ERROR MESSAGES (R)

INVALID "ELSE" CLAUSE

Explanation: An ELSE clause appears in your program in a position
where it cannot be matched with an IF statement. An implementation
restriction makes it impossible for CPL to execute even direct mode
statements while you have such an error in your program.

INVALID "FROM" OR "INTO" VARIABLE ident

Explanation: The variable specified in the FROM option of the ~vRITE
statement or the INTO optin of the READ statement must be either a
CHARACTER VARYING or NONVARYING scalar or a CHARACTER NONVARYING
array.

INVALID ARGUMENT TO keyword OPTION

Explanation: A negative argument is illegal.

INVALID ASSIGNMENT CONVERSION AMONG NON-COMPUTATIONAL DATA TYPES

Explanation: The computational data types, FIXED, FLOAT, CHAR and
BIT. Ir--rs illegal to convert a non-computational data type (FILE,
LABEL, POINTER, etc.) to a computational data type, or vice-versa.

INVALID ASSIGNMENT STATEMENT

Explanation: An assignment statement has the format

target [,target]... = expression;

where the "target" is either a simple identifier or a subscripted
identifier.

INVALID CHAR "char" AT END OF STRING "string"

Explanation: A character string constant is of the form ' ..• '. A bit
strIng constant is of the form ' ... 'radix, where "radix" is one of B,
Bl, B2, B3 and B4.

INVALID CHAR "char" IN BIT STHING TOKEN "string"

Explanation: The specified character is illegal for this type of bit
string constant.

A bit string constant has the format ' •.. 'radix, where the "radix" is
one of B, Bl, B2, B3 or B4. The characters that may appear between
the single quotes depend upon the radix, as follows:

25-40

CPL ERROR MESSAGES (R)

Radix Number system

B or Bl Binary
B2 Base 4
B3 Octal
B4 Hexadecimal

Legal digits

0,1
0,1,2,3
0-7
0-9, A-F

INVALID CHAR "char" IN CHAR TO BIT CONVERSION OF "string"

Explanation: In a CHARACTER to BIT conversion, the CHARACTER string
source may not contain any other character besides 0 and 1.

INVALID CHAR "char" IN NUMERIC STRING "string"

Explanation: The only characters which are legal in numeric strings
are the digits 0-9, the decimal point (.), a sign (+ or -), and the
letter E in E-type FLOAT constants.

INVALID CHAR "char" IN PPN FOR FILEID "string"

Explanation: (TOPS-IO only) An illegal character appears in the
proJect-programmer number in the file-specification in the TITLE
option of the OPEN statement or in the LOAD, SAVE or WEAVE statement.
A project-programmer number has the format [proj#,prog#], where each
of the numbers is octal, containing only the digits 0-7.

User Response: If you wish execution to continue when this error
occurs, then you may use the UNDEFINEDFILE(filename) ON-condition to
specify what action CPL should take.

INVALID CHARACTER "'" IN CHARACTER TO ARITHMETIC CONVERSION

Explanation: A numeric string, used in a CHARACTER to arithmetic
conversion, must contain an arithmetic constant, possibly with blanks
preceding and following.

INVALID COMPARISON OF NON-COMPUTATIONAL DATA TYPES

Explanation: When comparing two POINTER values,
only for equality or inequality (= or A=).
operators (e.g., greater than) are valid only for
types.

INVALID CONVERSION -- NON-COMPUTATIONAL TO keyword

you may test them
The other comparison
computational data

Explanation: An attempt has been made to convert a non-computational
data type (FILE, LABEL, POINTER etc.) to a computational data type
(FIXED, FLOAT, CHARACTER, BIT). Such conversions are illegal.

INVALID CONVERSION FROM keyword TO keyword

Explanation: An attempt has been made to convert a non-computational
data type (FILE, LABEL, POINTER, etc.), to a computational data type
(FIXED, FLOAT, CHARACTER or BIT), or vice-versa. Such conversions are
illegal.

25-41

CPL ERROR MESSAGES (R)

INVALID DIMENSION RANGE FOR ident

Explanation: In the declaration for the specified array, the lower
bound for one of the dimensions exceeds the upper bound.

Note: If no lower bound is specified in a dimension range, then 1 is
assumed.

INVALID DUPLICATE OR CONFLICTING DECLARATIONS OF ident IN SAME BLOCK

Explanation:
identifier.
declarations:

A block contains two explicit declarations of
All the following are treated by CPL as

1. An identifier being declared in a DECLARE statement.

2. An identifier appearing in a statement label.

the same
explicit

3. An identifier appearing in the parameter list of a PROCEDURE
statement.

Note: There is one circumstance in which two explicit declarations of
the same identifier may appear in the same block: If an identifier
appears in the parameter list of a PROCEDURE statement, then the
PROCEDURE block may contain a separate declaration of the parameter in
a DECLARE statement giving the data type attributes.

INVALID IDENTIFIER IN EXTENT OR INITIAL EXPRESSION FOR STATIC STORAGE
FOR ident

Explanation: A STATIC storage class may not have variable extent
expressions. All expressions appearing in dimensions bounds or string
lengths must contain only constants.

INVALID NEGATIVE ARGUMENT FOR DELAY

Explanation: The argument to the DELAY statement must be zero or
posItive.

INVALID NEGATIVE ARGUMENT TO FUNCTION ident

Explanation: The argument to the HIGH and LOW built-in functions must
be 0 or posItive.

INVALID OR DOUBLE DOT IN NUMERIC STRING "string"

Explanation: A numeric string may contain only a single decimal
point, and it must appear before the E in an E-type FLOAT constant.
EXAMPLE: l289.45e7 is a legal constant, equal to 12894500000.

25-42

CPL ERROR MESSAGES (R)

INVALID OR DOUBLE EXPONENT IN NUMERIC STRING "string"

Explanation: A numeric string may contain the character "E" to
speclfy a power of 10 by which the mantissa is to be multiplied. The
exponent field must be at the end of the number, and consist of the
letter E, followed by an optional exponent sign, followed by one or
two digits. EXAMPLE: 23E5 and 34.8E-4 are legal numeric constants,
equal to 2300000 and .00348, respectively.

INVALID PTR QUALIFIER FOR NON-BASED IDENTIFIER ident

Explanation: An expression contains a pointer qualifier (POINTER
variable followed by the operator "->") but the identifier being
qualified does not have the BASED attribute.

This message will also be typed if you use the SET option of the
ALLOCATE statement with an identifier which does not have the BASED
attribute.

User Response: Add a DECLARE statement to your program, specifiying
that the identifier being qualified has the BASED attribute.

INVALID RANGE SPEC IN DEFAULT STATEMENT

Explanation: The RANGE spec in the DEFAULT statement is in the format
RANGE(let) or RANGE(let:let). In the second format, the first letter
may not appear later in the alphabet than the second letter.

INVALID SIGN "char" IN NUMERIC STRING "string"

Explanation: In CHARACTER to FIXED or FLOAT conversion, a sign may
appear at the beginning of the numeric string or it may appear after
the letter E to specify the sign of the exponent in E-type FLOAT
constants.

INVALID TRANSFER INTO ITERATIVE DO GROUP

Explanation: A GOTO statement may not make a transfer from outside a
DO group into the DO group.

Note: There is one exception to this rule. If the DO statement is
non=rterative (just "DO;"), then it is legal to transfer into it.

INVALID USE OF ARRAY ident

Explanation: An array may not be used in a CPL expression. This is a
restrlctlon in CPL.

User Respons~ You can usually replace an array expression with a DO
loop. For example, the statements

DECLARE A(lO};
A = A + 1;

25-43

CPL ERROR MESSAGES (R)

can be replaced with

DECLARE A(lO);
DO I = 1 TO 10;
A(I) = A(I) + 1;
END;

INVALID ZERO FIELD IN PPN IN FILEID "string"

Explanation: (TOPS-IO only) The project-programmer number field
appearing in a file-specification In the TITLE option of the OPEN
statement or in a WEAVE or LOAD or SAVE statement is illegal. The ppn
field must have the format [proj#,prog#], where the two numbers ale
non-zero octal numbers.

User Response: If you wish execution to continue when this error
occurs, then you may use the UNDEFINEDFILE(filename) ON-condition to
specify what action CPL should take.

KEYCKI -- INVALID KEYWORD ARGUMENT keyword

Explanation: System error. The keyword code passed to the KEYCKI
routIne is invalid.

User Response: Save all relevant output and mail it to Digital
Equipment Corporation.

KEYCKK -- TOO MANY KEYWORDS

Explanation: System error. Too may keywords were passed to KEYCKI.

Implementation Note: The KEYCKI routine is called to check for
duplIcate or conflicting keywords in several statements such as GET,
PUT, READ, WRITE, OPEN and CLOSE. It 1S also used to check for
duplicate or conflicting attributes for each identifier declared in a
DECLARE statement. And it is used to check for conflicting attributes
during the OPEN attribute merge.

The table allocated to hold the keywords contains 50 entries. If more
than 50 keywords are passed to KEYCKK then the table will overflow.
If necessary, the table size can be increased.

User Response: Save all relevant output and mail it to Digital
Equipment Corporation.

KEYFNT -- INVALID ARGUMENT

Explanation: System error. An invalid built-in function code was
passed to KEYFNT.

User Response: Save all relevant output and mail to Digital Equipment
Corporation.

25-44

CPL ERROR MESSAGES (R)

LABELS PERMITTED ONLY FOR COLLECT STATEMENTS -- LINE NUMBER REQUIRED

Explanation: You have used a statement label on a statement which has
no llne number. Labels are not permitted in direct mode.

LABEL MAY NOT PRECEDE "ELSE" IN SAME STATEMENT

Explanation:
"label: ELSE

You . " ... , . have entered a statement in the
The ELSE keyword should precede the label.

LINDFI -- INVALID DEFAULT STATEMENT

Explanation: System error. A DEFAULT statement 5MB is invalid.

form

User Response: Save all relevant output and mail it to Digital
Equlpment Corporation.

LINDLB -- INVALID LABEL 5MB

Explanation: System error. A LABEL 5MB has an illegal format.

User Response: Save all relevant output and mail it to Digital
Equipment Corporation.

LINDPA -- INVALID VARIABLE IN DECLARATION

Explanation: System error. LINDPA has detected a variable in a
DECLARE statement which does not lie inside an extent expression.

User Response: Save all relevant output and mail to Digital Equipment
Corporatlon.

LINDPF -- DON'T RECOGNIZE KEYWORD "keyword"

Explanation: A keyword has appeared in a DECLARE statement which the
llnk routlnes do not recognized. This can happen if you use a
partially implemented feature which is not described in the CPL
documentation.

User Response: If you are using an undocumented feature then stop
USTrig it.

If you are using only documented features, then
error. Please save all relevant output and
Equipment Corporation.

LINE NUMBER string EXCEEDS 9999.99

this
mail

is a system
it to Digital

Explanation: CPL line numbers must be in the range 1.00 to 9999.99.

25-45

CPL ERROR MESSAGES (R)

LINE NUMBER string HAS MORE THAN 2 FRACTIONAL DIGITS

Explanation: CPL line numbers must be in the range 1.00 to 9999.99.
No more than two digits may appear after the decimal point.

LINE NUMBER string IS ZERO

Explanation: CPL line numbers must be in the range 1.00 to 9999.99.
If the line number appears in the BY clause of the NUMBER statement or
the NUMBER option of the LOAD or WEAVE statement then it must be in
the range 0.01 thru 9999.99.

LINE NUMBER string MAY NOT BE LESS THAN 1

Explanation: CPL line numbers must be in the range 1.00 through
9999.99.

LINE NUMBER NOT FOUND

Explanation: There is no statement in your program with the line
number specified in the ERASE statement.

LINFDC -- CAN'T FIND DCB FOR DECLARATION OF ident

Explanation: System error. CPL cannot erase an explicit declaration
because it cannot find the declaration block (DCB) for the explicit
declaration being erase.

User Response: Save all relevant output and mail to Digital Equipment
Corporation.

LINGDO -- REACHED CCOEOX IN DECLARATION

Explanation: System error. LINGDO has reached the CCOEOX operator in
the DECLARE 5MB.

Implementation Note: Any rout~ne using LINGDO to defactor a DECLARE
statement must--stOp processIng at the CKDECLARE operator. This
operator appears in the DECLARE 5MB just before the CCOEOX operator.

User Reseonse: Save all relevant output and mail to Digital Equipment
CorporatIon.

LINULB -- CAN'T FIND DCB FOR LABEL 5MB

Explanation: System error. CPL is unable to erase a LABEL
declaration since it cannot find the declaration block (DCB) for the
LABEL declaration.

User Response: Save all relevant output and mail to Digital Equipment
Corporation.

25-46

CPL ERROR MESSAGES (R)

LINULB -- INVALID LABEL BLOCK

Explanation: System error. The 5MB for a statement label contains an
lllegal operator.

User Response: Save all relevant output and mail to Digital Equipment
Corporation.

MISSING PTR QUALIFIER FOR BASED IDENT ident

Explanation: The specified identifier has the BASED attribute, but
there is no POINTER qualifier (POINTER value followed by "-)"
operator) for it.

This message will also appear if you execute
specifying a BASED identifier, but there
statement.

an ALLOCATE statement,
is no SET option in the

User Response: Respecify your statement so that all BASED variables
have POINTER qualifiers.

MISSPS -- INVALID POSITION TO SET IN SAB

Explanation: System error. An illegal argument has been specified in
elther a -n-:sAB SET,POSITION" or ".SAB ADJUST" operation. The position
specified must lie between 0 and the value in the LENGTH field of the
SAB.

User Response: Save all relevant output and mail it to Digital
Equipment Corporation.

MORE THAN 4 DIGITS IN LINE NUMBER string

Explanation: A CPL line number must lie in the range 1.00 to 9999.99.
Only four digits may appear before the decimal point and two digits
may appear after.

NEGATIVE # OF DIGITS IN E FORMAT ITEM

Efielanation: The second argument to ~n E format item is negative.
T 1S argument may be 0 if you want no digits to follow the decimal
point in the output, but it may not be negative.

NEGATIVE # OF DIGITS IN F FORMAT ITEM

Explanation: The second argument to an F format item is negative.
Thls argument may be 0 if you want no digits to follow the decimal
point in the output, but it may not be negative.

NEGATIVE SKIP OPTION IS ILLEGAL

Explanation: The argument of the SKIP option of the PUT or GET
statement, or the SKIP format item of the PUT EDIT statement may not
be negative.

25-47

CPL ERROR MESSAGES (R)

NO DEVICE NAME PRECEDES COLON IN FILEID "string"

Explanation: (TOPS-IO only) In a file-specification appearing in the
TITLE option of the OPEN statement or in the LOAD, SAVE or WEAVE
statements, contains a colon with no device name preceding.

User Resp~ If you wish execution to continue when this error
occurs, then you may use the UNDEFINEDFILE(filename) ON-condition to
specify what action CPL should take.

NO DIGITS IN EXPONENT OF STRING IIstring"

Explanation: In a CHARACTER to FIXED or FLOAT conversion, the
exponent of an E-type FLOAT constant contains no digits. EXAMPLE:
63.27E3 is a legal E-type constant equal to 63270.

NO DIGITS IN ~1ANTISSA OF STRING ilstring"

Explanation: In a CHARACTER to FIXED or FLOAT conversion, the
mantissa portion of the numeric string contains no digits.

NO DIGITS IN STRING ilstring"

Explanation: In a CHARACTER to FIXED or FLOAT conversion, the numeric
string contains no digits.

NO FILENA~1E PRECEDES DOT IN FILEID "string"

Explanation: (TOPS-IO only) In the file-specification given by the
TITLE option of an OPEN statement or in the LOAC, WEAVE or SAVE
statement contains a dot with no filename preceding.

User Response: If you wish execution to continue when this error
occurs, then you may use the UNDEFINEDFILE(filename) ON-condition to
specify what action CPL should take.

NO MONITOR TABLE SPACE TO OPEN FILE filespec

Explanation: (TOPS-IO only) The TOPS-IO monitor is unable to open a
file due to lack of table space.

User Response: Please report this problem to your system analyst.

If you wish execution to continue when this error occurs, then you may
use the UNDEFINEDFILE(filename) ON-condition to specify what action
CPL should take.

NO ROOM ON STRUCTURE OR QUOTA EXCEEDED FOR FILE filespec

Explanation: (TOPS-IO only) An ENTER UUO failed because either

1. There is no more room on the structure.

2. You have used up your personal quota on the output structure.

25-48

CPL ERROR MESSAGES (R)

User Response: If you wish to create a new output file, then you must
return to monltor level and delete some files

If you wish execution to continue when this error occurs, then you may
use the UNDEFINEDFILE(filename) ON-condition to specify what action
CPL should take.

NO UFD FOR FILE filespec

Explanation: (TOPS-IO only) CPL was unable to open a file on the
speclfied disk device because there is no User File Directory (UFD)
for the ppn on that device.

User Response: If you have been assigned a quota on the specified
devic~na--if you wish to create a file on that device, then return
to monitor level and issue a TOPS-IO MOUNT command. This command will
create a UFD for your ppn on that device.

If you have not been assigned a quota on the desired device, then
contact your system administrator.

If you wish execution to continue when this error occurs, then you may
use the UNDEFINEDFILE(filename) ON-condition to specify what action
CPL should take.

NON-POSITIVE FIELD WIDTH FOR E OR F FORMAT lTEM

Explanation: The first argument to the E or F format item must not be
negative or zero.

NORMAL TERMINATION OF keyword ON-UNIT

Explanation: Your program has executed the END statement of the
specified ON-unit. This is usually an error.

User Response: You should change your ON-unit so
statement will be executed out of the ON-unit.
termination" of the ON-unit will permit your program to
the error.

ONLY ONE FIELD IN PPN IN FILEID "string"

that a GOTO
This "abnormal

recover from

Explanation: (TOPS-IO only) The project-programmer number field of a
flle-speciflcation appearing in the TITLE option of the OPEN statement
or in the LOAD, SAVE or WEAVE statement should be in the format
[proj#,prog#], where the two numbers are octal.

User Response: If you wish execution to continue when this error
occurs, then you may use the UNDEFINEDFILE(filename) ON-condition to
specify what action CPL should take.

25-49

CPL ERROR MESSAGES (R)

OUTPUT HAS EXCEEDED LENGTH OF STRING VBLE ident

Explanation: In a PUT STRING operator, the output has exceeded the
length-OI~e string variable specified in the STRING option.

System Action: All PUT processing stops. No change is made to the
value- rn--the STRING option variable. The value of this variable is
exactly what it was before the PUT operator began.

User ~~sponse: There are several ways you can handle this problem:

1. Specify fewer items in the output list.

2. Change the declaration of the STRING variable so that it will
be long enough to accomodate all the output.

3. Use PUT EDIT with the STRING option so that you can control
the format of the output. You may be able to use less space
in the output string by specify short field widthis in the
formats.

PAGESI ZE OPTION REQUIRES A II PRINT" FILE

Exelanation: Self-explanatory.

PARM ident DECLARED WITH INITIAL ATTRIBUTE

Explanation: Self-explanatory.

PARM ident DECLARED WITH VBLE EXTENT EXPRESSIONS

~lan~!ion~ The separate declaration for a parameter appearing in a
PROCEDURE statement may not contain variables in the string lengths or
in the array bounds.

User Response: Instead of using variables in the extent expressions,
code an asterisk. The corresponding string length or array bound pair
will be taken from the argument when the PROCEDURE is called.

PAR PAT -- ILLEGAL INDEX INTO REDUCTION TABLE

Explanation: System error. An illegal argument was passed to PARPAT.

User Response: Save all relevant output and send to Digital Equipment
Corporation:--

PARPPT -- ILLEGAL INDEX INTO PARSER TABLE

Expla~ati~n: System error. An illegal argument was passed to PARPPT.

User Response: Save all relevant output and mail it to Digital
Equipment Corporation.

25-50

CPL ERROR MESSAGES (R)

PARSE ERROR -- CAN'T RECOGNIZE ilstring"

Explanation: CPL does not fully recognize the statement which has
just been entered.

The "parse" phase of CPL is th~t phase which recognizes the statement
which you have typed in and which translates that statement into an
internal CPL format.

CPL examines the statement from left to right. If it finds an
identifier, keyword, constant or operator which does not belong where
it was found, then CPL types the above error message. The invalid
identifier, keyword, constant or operator is typed out between the
quotes.

If the invalid string is a II;", then the statement ended unexpectedly.

?ystem Action: CPL ignores the entire line which contained the
erroneous element. Even if there are several statements on the line
and only one of them is incorrect, the whole line is ignored.

Use£ ~esEonse~ Correct the error and retype the line.

PARSEM -- ILLEGAL PARSER SEMANTIC CODE

Explanation: System error. An invalid argument was passed to the
PARSEM routine.

User Reseonse: Save all relevant output and mail to Digital Equipment
CorporatIon.

PARSER STACK OVERFLOW

Explanation: System error. The parser stack overflowed.

Implementation Note: The parser stack contains one entry for each
token WhICh nas not yet been reduced. The current CPL grammar should
not require more than about 10 stack entries.

User Response: Save all relevant output and mail to Digital Equipment
CorporatIon:--

PARSER STACK UNDERFLOW

Explanation: System error. The parser stack has underflowed.

Us~£ ~~sponse: Save all relevant output ?nd mail to Digital Equipment
Corporation.

POINTER FOR ident DOES NOT POINT TO BEGINNING OF DATA BLOCK FOR ident2

§~Elanation: You have attempted to execute a FREE statement for a
BASED identifier (the first identifier appearing in the message), but
the POINTER variable qualifying the BASED variable does not point to
the beginning of a storage area allocated by an ALLOCATE statement.
There is a CPL restriction that a FREE statement may free only an
entire data block; a partial data block may not be freed.

25-51

CPL ERROR MESSAGES (R)

The second identifier (ident2) appearing in the error message is for
your information. It specifies the name of the BASED identifier which
appeared in the ALLOCATE statement which allocated the storage to
which the POINTER qualifier points.

User Response: You must change your program so that it releases only
entire data blocks. Furthermore, your program must maintain a copy of
the pointer which was returned by the SET option of the ALLOCATE
statement which allocated the BASED storage, so that you can free the
storage later.

POINTER FOR ident DOES NOT peINT TO POINTER STORAGE AREA

Explanation: The specified identifier is a POINTER with the BASED
storage class attribute. It is qualified by another POINTER which
points to a storage area for a data type other than POINTER.

Normally CPL permits you to qualify a BASED variable with a POINTER
pointing to any data area, whether that data area was allocated with
the same data type as the BASED identifier or not. But in the case of
POINTER BASED identifiers, the data area must be for a POINTER.

User Response: Set the qualifying POINTER variable to the ADCR of an
actual POINTER.

POINTER FOR ident HAS INVALID BIT ALIGNMENT

Exelanation: The specified BASED identifier has a POINTER qualifier
whlch has an invalid bit displacement for the data type of the BASED
identifier. When a POINTER is assigned the ADCR (address) of a BIT or
CHARACTER data element which is not left-justified in the 36-bit
DECsystem-lO/20 word, then the POINTER will have a non-zero bit
alignment. Now if such a POINTER is used to qualify a EASED
identifier, then the data type of the BASED identifier must permit the
bit alignment of the POINTER.

If the BASED identifier is FIXED, FLOAT, CHARACTER VARYING or BIT
VARYING, then the POINTER must have a bit displacement of zero (the
POINTER value must be word-aligned). If the BASED identifier is
CHARACTER NONVARYING, then the POINTER must have a bit displacement of
0, 7, 14, 21 or 28. If the BASED identifier is BIT NONVARYING, then
the POINTER may have any bit displacement (0, 1, 2, .•. , 35).

User Response: This error message almost always indicates a
programming error. Usually you will find that you have not
initialized the POINTER variable to the address you had thought.

However, it may be that you are attempting to do some
machine-dependent arithmetic, such as to treat a CHARACTER string (in
internal format) as an integer. If that is the case, you'll have to
do it in such a way that your POINTER has the proper alignment. For
example, you might copy the character string to another CHARACTER
variable and use the ADDR of that variable as your POINTER value.

25-52

CPL ERROR MESSAGES (R)

POINTER FOR ident IS NULL OR INVALID

Explanation: The specified BASED identifier is qualified by a null or
lnvalld POINTER variable. A POINTER variable is null or invalid in
the following circumstances:

1. When a POINTER is first allocated, it is set to a null value.

2. When a POINTER is assigned the value of the NULL built-in
function, then the POINTER is given a null value.

3. When a storage area is freed for any reason, then all POINTER
variables which point to an address in that storage area
become invalid. A storage area may be freed for any of the
following reasons:

1. If a program block is terminated, then storage for all
AUTOMATIC variables DECLAREd in the block is freed.

2. A FREE statement can free a storage block for CONTROLLED
or BASED storage.

3. If you erase or replace a DECLARE statement in your
program, then all data blocks allocated for identifiers
DECLAREd in that statement are freed.

4. If you type an XEQ statement, then CPL automatically
frees all BASED and CONTROLLED is automatically freed,
and all POINTERs pointing to such storage are
automatically made invalid.

User Response: Usually this error message indicates that you have not
intialized your POINTER variable. In that case, you should use the
ADDR built-in function to set the value of the POINTER.

If the problem has arisen because you typed the XEQ command, then you
should use the CONTINUE statement when you wish to continue execution.

POINTER FOR ident POINTS TO NON-BASED STORAGE FOR ident2

Explanation: A FREE statement is attempting to free the specified
EASED identifier, but the POINTER value qualifying the BASED
identifier does not point to storage which was allocated by an
ALLOCATE statement for BASED storage.

The second identifier ("ident2") appearing in the error message is
given for your information. It specifies the name of the identifier
for which the storage area to which the POINTER value points was
allocated.

User Response: This message usually indicates a simple programming
error. Probably the POINTER value qualifying the BASED identifier was
not properly initialized.

25-53

CPL ERROR MESSAGES (R)

POINTER FOR ident POINTS TO STORAGE BLOCK SMALLER THAN ident2'S
(integer WORDS)

Explanation: A FREE statement for BASED stor~ge is attempted to
release a partial block of storage. CPL requlres that you free the
entire data block. In this case, the POINTER value qualifying the
BASED identifier in the FREE statement points to a storage block which
is larger than the storage area indicated by the declaration for the
BASED identifier specified in the FREE statement.

The integer given in the error message is for your information. It
gives the actual size (in words) of the data block which you are
attempting to free.

POINTER POINTS TO STORAGE AREA TOO SMALL FOR ident

Explanation: The specified BASED identifier is qualified by a POINTER
which points to a storage area which is too small for the BASED
identifier. It is illegal in CPL to reference any data beyond the end
of a data block.

User Response: Occasionally this error situation occurs in what might
be a valid data reference. For example, perhaps the BASED identifier
is an array and you are referencing the first element of the array.
The reference will be illegal if the data block is too small for the
entire array. If this type of error occurs, then you will have to
DECLARE an additional BASED identifier with smaller array bounds, and
use that identifier instead.

If you require some flexibility in the size of the the based
identifier, then you can use variables in the extent expressions for
the declaration of the BASED variable. CPL will evaluate these extent
expressions anew each time the BASED identifier is referenced.

POINTER VBLE DOES NOT HAVE POINTER DATA TYPE

Explanation: Your expression contains a reference preceding the
operator "_>" which 'does not have the POINTER data type.

Use£ Response: If the reference is to a variable, make sure that it
has been DECLAREd to have the POINTER data type.

If the reference is a function PROCEDURE reference, make sure that the
PROCEDURE statement contains a RETURNS option specifying the POINTER
data type.

PROC ident REQUIRES integer ARGUMENTS

Explanation: You have attempted to invoke a PROCEDURE, but the number
of arguments in the reference does not equal the number of parameters
in the PROCEDURE statement.

PROC AND ENTRY STATEMENTS MUST BE LABELED

Explanation: The PROCEDURE statement must have a label.

25-54

CPL ERROR MESSAGES (R)

PROC OR ENTRY STMTS MAY NOT BE "THEN" OR "ELSE" CLAUSES

Explanation: A PROCEDURE statement may not be the THEN or ELSE clause
of an IF statement.

PROGRAM CONTAINS NO STATEMENTS

Explanation: You have specified a line number in a LIST or ERASE
statement, but your program contains no statements.

REMOTE FORMAT ident IS NOT IN SAME BLOCK

Explanation: You have specified an R format item in a PUT EDIT
statement, but the specified FORMAT statement does not lie in the same
block as the PUT EDIT statement.

User Response: Move the FORMAT statement into the same block as the
PUT EDIT statement.

REMOTE TARGET ident IS NOT A FORMAT

Explanation: You have specified an R format item in a PUT EDIT
statement, but the argument is not the label of a FORMAT statement.

Note also that you may not reference a FORMAT statement which is in a
different block from the PUT EDIT statement.

RESTRICTION -- DFT STATEMENT MUST BE IN OUTER BLOCK

Explanation: A DEFAULT statement may not be inside a BEGIN/END block
or a PROCEDURE/END block.

User Response: Move all your DEFAULT statements tQ the outer block.
~is consIdered good programming practice to put all your DEFAULT
statements at the beginning of your program.

S LESS THAN D IN E FORMAT ITEM

Exelanation: An E format item appearing in a PUT EDIT statement has a
thlrd argument which is smaller than the second argument.

If the arguments to the E format item are w, d and s, then "d" stands
for the number of digits to appear after the decimal point, and "s"
stands for the number of significant digits to be printed. The value
of s must be at least as large as the value of d.

SCALAR ARG ident MAY NOT BE PASSED AS DIMENSIONED PARM ident

Explanation: You have attempted to invoke a PROCEDURE, specifying a
scalar argument where the corresponding PROCEDURE parameter is an
array.

25-55

CPL ERROR MESSAGES (R)

SCALAR EXPRESSION ARGUMENT MAY NOT BE PASSED AS DIMENSIONED PARM ident

Explanation: You have attempted to invoke a PROCEDURE, specifying an
expresslon where the corresponding parameter is an array.

SEARCH LIST EMPTY -- CAN'T OPEN filespec

Explanation: (TOPS-IO only) You have attempted to open a file using
the default device DSK:, but your search list is empty.

User Response: Either specify a specify disk in the TITLE option of
the OPEN statement, or else return to monitor level and use the SETSRC
system program to create a search list for your job.

If you wish execution to continue when this error occurs, then you may
use the UNDEFINEDFILE(filename) ON-condition to specify what action
CPL should ta~e.

SEFBFR -- STACK ERROR FOR PSEUDO-VARIABLE

Explanation: System error. After semantic processing of a
pseudo-varlable reference had been completed, the semantic stack still
had some entries in it.

User Reseonse: Save all relevant output and mail to Digital Equipment
Corporatlon.

SEFTAB -- ARGUMENT DOES NOT HAVE A TABLE VALUE

Explanation: System error. An invalid argument was passed to the
SEFTAB routine.

User Response: Save all relevant output and mail it to Digital
Equipment Corporation.

SEFTAB -- ARGUMENT IS OUT OF RANGE

Explanation: System error. An invalid argument was passed to the
SEFTAB routine.

User Response: Save all relevant output and mail it to Digital
Equipment Corporation.

SEMDUP -- STACK ERROR

Explanation: System error. After handling the CCODUP operator, the
stack did not have 2 entries on it.

SEMLI -- ILLEGAL VALUE OF AON OR AOFF

Explanation: System error. The ON and OFF values returned by SEMTAB
for the current operator.

25-56

CPL ERROR MESSAGES (R)

Implementation Note: The OFF value is the number of stack entries to
be removed by--rfie current operator. The ON value is the number of
stack entries to be added. The SEMLI routine can handle values of ON
less than or equal to 3 and values of OFF less than or equal to 1.

~ Reseonse: Save all relevant output and mail to Digital Equipment
Corporation.

SEMLI -- STACK UNDERFLOW

Explanation: System error. The semantic stack has underflowed.

User Reseonse: Save all relevant output and mail to Digital Equipment
Corporation.

SEMLUP -- CAN'T HANDLE 5MB OPERATOR

Explanation: The 5MB contains an operator which the semantic routines
cannot handle. This will happen if you attempt to use a partially
implemented feature which is not descripbed in the documentation.

User Response: If you have used an undocumented feature, then you
should remove that use from your program.

If you are using only document features, then this message indicates a
system error. Please save all relevant output and send it to Digital
Equipment Corporation.

SEMLUP -- INVALID ACTION CODE

Explanation: System error. The action code returned by SEMTAB was
invalid.

User Response: Save all relevant output and mail to Digital Equipment
Corporation.

SEMLVI -- STACK ERROR

Explanation: System error.
processed in an assignment
contain additional entries.

After the CCOLVI operator had been
statement 5MB, the stack was found to

User Response: Save all relevant output and mail to Digital Equipment
Corporation.

SEMSSI -- CAN'T HANDLE ARRAY OPERATOR

Explanation:
operator and
routine.

System error. The 5MB
the subscript count

operator following the CCOSS
is not recognized by the SEMSSI

User Reseo~ Save all relevant output and mail to Digital Equipment
Corporation.

25-57

CPL ERROR MESSAGES (R)

SEMSSI -- STACK UNDERFLOW

Explanation: System error. The subscript count found after the CCOSS
operator ln an 5MB is larger than the number of items on the semantic
stack.

User Response: Save all relevant output and mail to Digital Equipment
Corporation.

STACK OVERFLOW -- SIMPLIFY STATEMENT

Explanation: In attempting to execute a statement, the CPL semantic
routines found an expression to be so complex that its internal
"stack" overflowed.

The "complexity" of an expression has nothing to do with its length,
but rather with the number of intermediate results which must be saved
in order to evaluate it. Thus, for example, an expression containing
a large depth of nested parentheses may cause this message to appear.

User Response: If the expression cannot be simplified, then the
computatlon should be broken up into several separate statements.

STATEMENT HAS NO LINE NUMBER

Explanation: In loading a program with the LOAD or WEAVE statement
with no NUMBER option, a line was found with no line number.

System Action: CPL ignores the unnumbered line and continues loading.

User Res2onse: You must either edit the file so that all lines have
line numbers, or you should specify the NUMBER option of the LOAD or
WEAVE statement.

STATEMENT HAS OVERFLOWED STATEMENT BLOCK

Explanation: Your statement is too long to fit into an internal
statement block ..

Implementation Note: CPL "decomposes" statements into an internal
form and stores--the coded form in a "statement block." If your
statement is too long, then the decomposed form will not fit into a
default size statement block.

If this error gets to be a problem, it is possible for a system
analyst to modify the internal CPL system to allow bigger statements.

User Response: Simplify the long statement. If you cannot simplify
~ then try to split it up into several statements by assigning
complex intermediate values to variables and then using the variables
in the long statement.

STATEMENT NUMBER NOT FOUND

Explanation: The statement number specified in a direct statement
(such as BREAK, NOBREAK, XEQ, etc.) cannot be found.

25-58

CPL ERROR MESSAGES (R)

STATEMENT TOO LONG

~lanation: The statement text is too long to fit into a "st~tement
t ex tOIOc'K.""'"

Implementation Note: CPL stores the statement
text block with room for over 400 characters.
analyst can modify the internal CPL system
statement text block.

text in a statement
If necessarY, a system
to provide a larger

User Response: Simplfy the long statement. If you canot simplify it,
then try to split it up into several statements.

STATEMENT TYPE IS COLLECT-ONLY -- ENTER LINE NUMBER

Explanation: Certain CPL statements (such as SIGNAL and BEGIN) may
not be executed in "desk-calculator" mode, but must have a line
number.

~ Response: Reenter the statement, specifying a line number.

STATEMENT TYPE IS DIRECT-ONLY -- NO LINE NUMBER ALLOWED

Expl~nation: The statement may not have a line number.

STRING ident IS NOT ALLOCATED

Expl~nation: Storage has not been allocated for the specified
variable. For more information, refer to the message "ident" IS NOT
ALLOCATED.

STRING LENGTH FOR ident MUST BE POSITIVE

~lanation: The string length expression specified as the argument
to the CHARACTER or BIT attribute in a DECLARE statement is negative
or zero.

STRING VARIABLE ident IS A NAMED CONSTANT

Explanation: The specified identifier is a NAMED CONSTANT (e.g., a
FILE or LABEL).

STRING VARIABLE ident IS NOT A SCALAR

Explanation: The variable specified in the STRING option of a GET or
PUT statement has been declared to be an array.

STRING VARIABLE ident IS NOT CHARACTER TYPE

Explanation: The variable specified in the STRING option of a GET or
PUT statement is not the CHARACTER data type.

25-59

CPL ERROR MESSAGES (R)

STRINGSIZE [FOR ident]

Explanation: One of the following has occurred:

1. In an assignment statement, the CHARACTER or BIT expression
computed on the right hand size was longer than the length or
maximum length of the string variable on the left hand side
of the equal sign.

2. The CHARACTER or BIT expression specified in
statement is longer than the length specified
CHARACTER or BIT attribute in the RETURNS option
PROCEDURE statement.

a RETURN
with the

of the

System Action: After typing out the warning message, CPL continues
executing the-statement. No error exit is taken.

User Response: If you do not want this message to appear in your
program, you may do the following:

1. For an assignment statement, change the declaration of the
variable on the left-hand side of the statement so that it
specifies a longer string.

2. For either an assignment statement or a RETURN statement, use
the SUBSTR built-in function to remove the last few bits or
characters from the CHARACTER or BIT string being computed.

STRUCTURE OR DTA IS FULL OR QUOTA EXCEEDED FOR FILE filespec
STATUS code

FILE

Explanation: (TOPS-IO only) Block too large. One of the following
has occurred:

1. A block of data from a device is too large to fit in a buffer

2. A block is too large for the unit.

3. The file structure (DSK) or unit (DTA) has filled.

4. The user's quota on the file structure has been exceeded.

User Response: In the first two cases above, report the problem to
your system analyst.

In the last two cases, you must delete some files before you can
continue writing files on the file structure or DECtape. You do this
by returning to monitor level and using the DELETE command.

If the problem is a full disk device, then you may petition your
system administrator to increase your quota.

25-60

CPL ERROR MESSAGES (R)

SUB-STATEMENT NUMBER DOES NOT EXIST

Explanation: In an XEQ, CONTINUE, BREAK or NOBREAK statement, the
statement number specified does not exist, because the sUb-statement
number (the number specified after the "+" sign in the statement
number specification) does not exist on the line.

SYSDEL -- ERROR IN DISMS JSYS

Explanation: (TOPS-20 only) System error. Your program has attempted
to execute a DELAY statement, but an error occurred in the DISMS JSYS.

User Reseonse: Save all relevant output and mail to Digital Equipment
Corporation.

SYSDEL -- ERROR IN HIBER UUO

Explanation: (TOPS-IO only) The HIBER UUO took an error return. The
HIBER UUO is used in the DELAY statement.

SYSTEM TABLE JOBTTY NOT FOUND

Explanation: (TOPS-20 only) CPL system error.

User Response: CPL system error. Save all relevant output and mail
to Digital Equipment Corporation.

THE FIRST ARG OF FCN ident MUST BE A SIMPLE ID

Explanation: The first argument of the specified built-in function or
pseudo-variable must be a simple identifier. It may not be an
expression, nor may it be a subscripted identifier. For example, the
following functions have such a requirement: ALLOCATION, DIMENSION,
LBOUND, HBOUND, STRING and UNSPEC.

TOO MANY FIELDS IN PPN IN FILEID "string"

Explanation: (TOPS-IO only) The project-programmer number field of
the file-specification in the TITLE option of the OPEN statement or in
the LOAD, SAVE or WEAVE statements has more than two fields in it.

The format of the ppn field is [proj#,prog#], where the two numbers
are octal. No more than two fields may be specified.

Note: CPL does not support SFDs (sub-file directories).

TTY UNIT NUMBER NOT FOUND IN SYSTEM TABLE JOBTTY

Explanation: (TOPS-20 only) CPL system error.

User Response: CPL system error. Save al relevant output and mail to
Digital Equipment Corporation.

25-61

CPL ERROR MESSAGES (R)

TWO DECIMAL POINTS IN NUMBER

Exelanation: A numeric string may contain only a single decimal
pOInt, and it must appear before the E in an E-type FLOAT constant.
EXAMPLE: l289.45E7 is a legal constant, equal to 12894500000.

TWO EXPONENTS IN NUMBER

Explanation: A numeric string may contain the character "E" to
specify a power of 10 by which the mantissa is to be multiplied. The
exponent field must be at the end of the number, and consist of the
letter E, followed by an optional exponent sign, followed by one or
two digits. EXAMPLE: 23E5 and 34.8E-4 are legal numeric constants,
equal to 2300000 and .00348, respectively.

UNBALANCED LEFT PARENTHESIS

Exelanation: The statement contains an open (or left) parenthesis for
WhICh there is no matching close (or right) parenthesis.

UNBALANCED RIGHT PARENTHESIS

Explanation: The statement contains a close (or right) parenthesis
for which there is no matching left (or open) parenthesis.

UNMATCHED "END" STATEMENT

Explanation: Your program contains an END statement for which there
IS no matching DO, PROCEDURE or BEGIN statement.

Note: An implementation restriction makes it
many direct-mode statements while such an
program.

UNMATCHED DO PROC OR BEGIN STATEMENT

impossible to
error exists

execute
in your

Explanation: You program contains a DO, PROCEDURE or BEGIN statement
for which there is no matching END statement.

Note: An implementation restriction makes it
many direct-mode statements while such an
program.

impossible to
error exists

UNRECOGNIZED LOOKUP/ENTER CODE integer FOR ~ILE filespec

execute
in your

Explana t ion: (TOPS-IO only) System er ror .
faIled with an unrecognized error code.

A LOOKUP or ENTER UUO

User Response: Save all relevant output and mail it to Digital
Equipment Corporation.

If you wish execution to continue when this error occurs, then you may
use the UNDEFINEDFILE(filename) ON-condition to specify what action
CPL should take.

25-62

CPL ERROR MESSAGES (R)

UNTERMINATED CHARACTER STRING

Explanation: You have entered a statement which contains an opening
quote (I) wlth no matching closing quote.

UNTERMINATED COMMENT

Explanation: You have entered a statement which contains an opening
of a comment (/*) but there is no close (*/).

VARIABLE EXPRESSION IN STATIC DECLARATION OF ident

Explanation: A variable with the STATIC storage class may not have
variable extent expressions. All expressions appearing in dimension
bounds or string lengths must contain only constants.

WRITE-LOCK ERROR ATTEMPTING TO WRITE ON filespec

Exelanation: (TOPS-IO only) An ENTER UUO failed because of a
wrlte-Iock on the specified disk file structure.

User Response: If you wish execution to continue when this error
occurs, then you may use the UNDEFINEDFILE(filename) ON-condition to
specify what action CPL should take.

WRITE-LOCK OR NO-CREATE FOR ALL STRUCTURES IN SEARCH LIST FOR FILE
filespec

Explanation: (TOPS-IO only) An ENTER UUO failed in an attempt to open
an OUTPUT file because all structures in your search list have the
no-create or write-lock bit set.

User Response: If you wish execution to continue when this error
occurs, then you may use the UNDEFINEDFILE(filename) ON-condition to
specify what action CPL should take.

WRONG NUMBER ARGUMENTS TO FUNCTION ident

Explanation: The specified built-in function or pseudo-variable has
the wrong number of arguments.

WRONG NUMBER OF SUBSCRIPTS FOR DIMENSIONED VARIABLE

Explanation: The number of subscripts specified for an array
reference is different from the number of dimensions specified in the
DECLARE statement.

XEQ "STOP"

Explanation: Your program has executed a STOP statement.

25-63

CHAPTER 26

QUESTIONS AND ANSWERS ABOUT CPL (R)

This chapter answers some of the questions most often asked about CPL.

26.1 IS CPL THE SAME AS PL/I?

CPL implements a subset of the ANSI PL/I language standard.

The full PL/I language is enormous. Only two vendors have implemented
the full language, and both of those implementations required hundreds
of man-years of effort. CPL makes no claim to have matched that level
of development.

On the other hand, the CPL subset is a very powerful programming
language. All the PL/I program control constructs (IF, DO,
PROCEDUREs, and ON for error handling) have been implemented. There
are six computational data types (FIXED, FLOAT, CHARACTER, CHARACTER
VARYING, BIT, BIT VARYING) and one non-computational variable data
type (POINTER) • There are all four PL/I storage classes (AUTOMATIC,
STATIC, CONTROLLED and BASED). And almost all PL/I statements are
implemented or partially implemented. Read the chapter entitled
"Comparison of CPL with ANSI PL/I Standard."

26.2 WHAT IS AN INTERPRETER?

A "raw" computer cannot handle a complex language like PL/I. A
computer can "think" only in the sense of executing very simple
instructions (such as "add these two numbers and store the result
there"). A complex programming language like PL/I, with its IF and DO
statements, its PROCEDUREs and its input/output, is much too complex
to be handled directly by the computer. The computer requires some
intermediate program, a "translator" of some sort, which will make the
complex statements of the language accessible to the simple computer.
The statement "I=J+l;" means nothing to a computer unless some
intermediate program tells the computer where to find I and J, that
"+" means add, and that "=" means "store the result in."

The most commonly used intermediate program of this type is called a
"compiler." A compiler is a program which translates a high-level
computer language (like PL/I) into a actual computer instructions.
The symbols appearing in the high-level language program are turned
into simple individual instructions at the hands of the compiler.
FORTRAN-IO is an example of a compiler of the FORTRAN language on the
DECsystem-lO.

26-1

QUESTIONS AND ANSWERS ABOUT CPL (R)

When you use a compiler, you usually have to go through several steps:
First, the compiler translates the program into an "object" format,
then this "object" format must be loaded into core storage, and
finally the computer is told to executed the loaded program.

An "interpreter" works somewhat differently. It is not a "translator"
in the same sense. A true interpreter executes the program directly
from the high-level source statements. It takes a statement like
"I=J+I;" and it "interprets" the statement by causing it to be
executed immediately. If the statement is in a loop, then a true
interpreter will re-interpret the source each time that it is
executed.

CPL is actually a "semi-interpreter." CPL maintains the statement in a
form known as "reverse Polish notation." This notation represents a
source statement in a compact internal form which can be executed
quickly. This translation to internal form is done in two stages:

1. When you type the statement in, CPL "parses" the statement
into a form of this internal notation which does not take
into account the data types of the variables appearing in the
expression.

2. The first time that the statement is executed, the internal
format is translated further into a form which takes into
account the data types of the variables. This translation
will not have to be repeated unless you change some
declarations in your program.

CPL executes the statement by interpreting this final internal form of
the statement. This method IS not as fast as having the computer
execute the translated instructions, but it is not nearly as slow as
executing directly from the source code each time.

26.3 WHAT ARE THE ADVANTAGES OF AN INTERPRETER?

There are a number of advantages to an interpreter which offset the
disadvantage of slower execution speed.

CPL provides true source-level debugging for PL/I programs. When CPL
executes a program, it checks for a number of execution errors which
are not checked by language systems with a compiler. An example is
the validity of POINTER variables; CPL guarantees that a POINTER
points to only a valid storage area, while a compiler system may
permit a program to wipe out important data in storage inadvertently.

When CPL discovers an error in execution, a detailed error message is
typed out. The user then has several options. He can find out the
values of variables to find out where his program went wrong. He can
modify program statements or insert additional statements, save his
modifications on disk, and then continue execution of his program
without having to start from the beginning. Source level breakpoints
are also available.

26-2

QUESTIONS AND ANSWERS ABOUT CPL (R)

26.4 WHO CAN USE CPL?

The high level of execution support make CPL uniquely suited for
certain types of users.

26.4.1 Beginning Or Infrequent Prog~ammers

A person who needs to write an occasional progra~ to get an answer
will find CPL a useful tool. As the first chapter of the User's
Manual shows, the beginner with no previous experience in using
computers can begin getting answers as soon as he begins using CPL.
The first chapter will show him how to write simple programs quickly.

26.4.2 PLII Program Developers

Users who are developing production PLII programs to be run on PL/I
compilers on other computers can use CPL as a program checkout tool.

26.4.3 Students Learning Programming

The advanced features in the CPL subset, particularly the block
structuring and BASED storage, make it a useful educational tool. In
addition, the thorough error-checking features of the CPL interpreter
aid the learning process.

26.5 HOW WAS CPL WRITTEN?

CPL was written as a programming experiment to prove that modern
programming techniques could be used to substantially reduce software
development costs and improve programming quality and reliability.
CPL was written by one person (John Xenakis) in an eight month period,
during which he also wrote the program documentation and the quality
assurance test system.

26.6 HOW DOES CPL WORK INTERNALLY?

A module called DRIVER invokes the various CPL phases.
are as follows:

These phases

1. ACCEPT -- DRIVER calls this phase to input the statement from
the terminal (or the LOAD file) and break up the statement
into statement tokens.

2. PARSE -- this phase parses the
Polish notation, an internal
statement in compact form.

source text into reverse
format which represents the

3. LINK -- DRIVER calls this phase if the statement is collect.
This phase causes the collect statement to be linked in with
the other statements in the proper position. This phase also
processes DECLARE statements and other declarative
statements.

26-3

QUESTIONS AND ANSWERS ABOUT CPL (R)

4. EXECUTION -- DRIVER calls this phase if the statement is
direct. This phase executes the statement and returns,
unless the direct statement causes other statements to be
executed (as an EXECUTE statement would).

5. SEMANTIC RECOMPOSITION -- the EXECUTION phase calls this
phase the first time that a statement is executed. This
phase mOdifies the reverse Polish notation to take into
account the data types of the variables in the statement.

26.7 WHY IS THE LIST COMMAND IMPLEMENTED AS IT IS?

When you type a statement into CPL, CPL removes all leading blanks and
tabs. When typing it out as a result of the LIST command, CPL indents
two tabs if the statement is unlabeled, and one tab if the statement
is labeled.

This format was chosen after many discussions with a number of people.
It is the only one which satisfied a number of constraints:

1. The listing should not look sloppy if the statements were
entered sloppily.

2. The output format for the LIST statement must be the same as
the output format for the SAVE statement.

3. If statements are typed in, the LIST format should be
identical to the format produced if the same statements were
read from a file as the result of a LOAD or WEAVE statement.
The same must be true of statements typed in with the NUMBER
statement and read with the NUMBER option of the LOAD or
WEAVE statement.

26.8 WHY ISN'T INTEGER DIVISION PERMITTED?

Full ANSI PL/I permits division of FIXED quantities, but specifies it
in such a way that it cannot be implemented in any system that does
not support scaled data types.

As a compromise, CPL has implemented the non-standard functions DIVI
and DIVF.

26.9 WHY IS "OPEN" A NOP IF THE FILE IS ALREADY OPEN?

The ANSI PL/I standard specifies that if the file specified by the
FILE option of an OPEN statement has already been opened (and hasn't
been closed with a CLOSE statement), then the OPEN statement will be a
"no-operation," even if different file attributes are specified.

26-4

QUESTIONS AND ANSWERS ABOUT CPL (R)

26.10 WHY AREN'T PL/I STRUCTURES IMPLEMENTED?

Although CPL was designed to permit structures to be implemented in
the future, it was not possible to implement that feature in the
limited time when CPL was being developed.

26.11 WHY ARE LINE CONTINUATIONS SO AWKWARD?

In implementing a conversational version of PL/I, the following
problem arises: Most users will type their programs with precisely
one statement per line. They will require more than one line for a
statement very rarely.

In ANSI PL/I, you indicate the end of a statement by
semicolon character. Therefore, if a line does not
semicolon, the language processor knows that the statement
onto another line.

typing a
end in a
runs over

But in CPL, we have provided a more logical way: The semicolon will
be inserted for you since, in the vast majority of the cases, this is
what the user wants. But in the exceptional case where you need
several lines for a statement, then you type an additional
character(&).

This is not an ideal solution. It is ugly and unpleasant to use. But
is is consistent with the conversation nature of CPL, and will serve
the needs of most users most of the time.

26-5

CHAPTER 27

COMPARISON OF CPL WITH ANSI PL/I STANDARD (R)

27.1 DESCRIPTION OF CPL SUBSET

The following is a fairly complete description of the ANSI features
which are and are not supported by CPL.

27.1.1 Statements

1. The ALLOCATE and FREE statements are supported for CONTROLLED
and BASED storage, but not for AREAs.

2. The assignment statement is supported, but no aggregate
assignments are permitted.

3. The BEGIN statement is fully implemented.

4. The CALL statement with dummy and not-dummy arguments is
implemented. So are function PROCEDURE invocations.

5. The CLOSE statement is implemented.

6. The DECLARE statement is implemented, permitting factored
attributes and variables in the extent expression fields.

7. The DEFAULT statement is implemented with the following
options only: RANGE, FIXED, FLOAT, AUTOMATIC and STATIC.

8. The DELETE statement is not implemented.

9. The DO statement is fully implemented, with the WHILE, BY, TO
and REPEAT clauses, multiple specifications, and permitting
non-arithmetic control variables.

10. The END statement is implemented, permitting full multiple
closure.

11. The ENTRY statement is not implemented.

12. The FORMAT statement is implemented, but must be in the same
block as the PUT EDIT statement referencing it.

13. FREE statement -- see ALLOCATE.

27-1

COMPARISON OF CPL WITH ANSI PL/I STANDARD (R)

14. The GET statement is implemented, with the FILE, STRING,
SKIP, and LIST options. The COPY, DATA and EDIT options are
not implemented. Aggregates and DOs are not permitted in the
input list.

15. The GOTO statement is implemented, permitting termination of
a DO-group or a block.

16. The IF/THEN/ELSE statement is completely implemented, along
with all interactions with the DO statement.

17. The LOCATE statement is not implemented.

18. The null statement is implemented.

19. The ON statement with the SNAP and SYSTEM options, and
permitting arbitrary BEGIN/END block ON-units is implemented.
All ON-units are recursive.

20. The OPEN statement is implemented, with the TITLE option and
all supported file attributes including ENVIRONMENT. The
TAB, LINESIZE and PAGESIZE options are not available for
PRINT files.

21. The PROCEDURE statement is implemented, with the RETURNS
option. All function and subroutine PROCEDURESs are
recursive. Parameters may be declared to have any supported
data type.

22. The PUT statement is implemented, with the FILE, STRING,
SKIP, PAGE, EDIT and LIST options. The LINE and DATA options
are not implemented. Aggregates and DOs are not allowed in
the output list.

23.

24.

25.

The READ statement with the INTO
implemented. The SET, KEY and
implemented.

The RETURN statement for subroutine
is implemented.

The REVERT statement is implemented.

and IGNORE options is
KEYTO options are not

and function PROCEDUREs

26. The REWRITE statement is not implemented.

27. The SIGNAL statement is implemented.

28. The STOP statement is implemented.

29. The WRITE statement is implemented. The KEYFROM option is
not implemented.

27.1.2 Data Attributes

1. The following data type attributes are implemented: BINARY,
BIT, BIT VARYING, CHARACTER, CHARACTER VARYING, ENTRY, FILE,
FIXED, FLOAT, FORMAT, LABEL, POINTER, REAL, RETURNS. The
following data type attributes are not implemented: COMPLEX,

27-2

COMPARISON OF CPL ~ITH ANSI PLII STANDARD (R)

DECIMAL, ENTRY VARIABLE, FILE VARIABLE, FORMAT VARIABLE,
LABEL VARIABLE, OFFSET, PICTURE, GENERIC.

2. The following file attributes are implemented: INPUT,

3.

OUTPUT, PRINT, RECORD, SEQUENTIAL, STREAM, ENVIRONMENT. The
following file attributes are not implemented: DIRECT,
KEYED, UPDATE. CPL supports only ASCII files for INPUT or
OUTPUT. No binary files are supported.

All four storage classes are supported: STATIC,
BASED and CONTROLLED. Also, PARAMETER is
EXTERNAL is not supported.

AUTOMATIC,
supported.

4. Arrays are supported. DEFINED, STRUCTURE, LIKE, POSITION and
REFER are not supported ..

5. The following additional attributes are not supported:
ALIGNED, UNALIGNED, AREA, CONNECTED, INITIAL, REDUCIBLE and
IRREDUCIBLE.

6. Arbitrary variables and expressions
attribute declarations.

27.1.3 Formats

Formats are supported for PUT EDIT .only.

are permitted in

1. The following data format items are implemented: A, B, Bl,
B2, B3, B4, E and F. The C format item is not implemented.

2. The COLUMN,
implemented.

PAGE and SKIP control format items
The LINE and TAB format items are not.

3. The remote format item (R) is implemented.

4. Repetition factors are permitted.

are

5. Arbitrary expressions are permitted in format expressions and
repetition factors.

27.1.4 ON Conditions

CPL does not support condition prefixes. All supported conditions are
always enabled and cannot be disabled.

The following conditions are supported: CONDITION, ENDFILE, ERROR,
RECORD, STRINGRANGE, SUBSCRIPTRANGE, UNDEFINEDFILE and ZERODIVIDE.

The following conditions are not supported, although the errors
corresponding to these conditions can be processed by the ERROR
condition: AREA, CONVERSION, ENDPAGE, FINISH, FIXEDOVERFLOW, KEY,
NAME, OVERFLOW, SIZE, STRINGSIZE, STORAGE, TRANSMIT and UNDERFLOW.

27-3

COMPARISON OF CPL WITH ANSI PLII STANDARD (R)

27.1.5 Built-in Functions And Pseudo-variables

There are several non-ANSI built-in functions
implemented. Refer to the "compatibility"
chapter for a list of those.

and pseudo-variables
section later in this

1. The following ANSI arithmetic functions are implemented:
ABS, CEIL, FLOOR, MAX, MIN, MOD, SIGN, TRUNC. The following
are not implemented: ADD, BINARY, COMPLEX, CONJG, DECIMAL,
DIVIDE, FIXED, FLOAT, IMAG, MULTIPLY, PRECISION, REAL, ROUND.

2. All the ANSI mathematical functions are implemented: ATAN,
ATAND, COS, COSD, EXP, LOG, LOGIO, LOG2, SIN, SIND, SQRT.

3. The following string-handling functions are implemented:

4.

AFTER, BEFORE, COLLATE, COPY, EVERY, HIGH, INDEX, LENGTH,
LOW, REVERSE, SOME, STRING, SUBSTR, TRANSLATE, UNSPEC,
VERIFY. The following are not implemented: BIT, CHARACTER,
DECAT, VALID.

The following array functions are
HBOUND, LBOUND. The following
PROD, SUM.

implemented: bIMENSION,
are not implemented: DOT,

5. The following storage control functions are implemented:

6.

ADDR, ALLOCATION, NULL. The following are not implemented:
EMPTY, OFFSET, POINTER.

The following
implemented:
ONSOURCE.

ON-condition built-in functions are not
ONCHAR, ONFIELD, ONFILE, ONCODE, ONKEY, ONLOC,

7. The following functions are implemented: DATE and TIME.

8. The following functions are not implemented: BOOL, LINENO,
PAGENO.

9. The following pseudo-variables are implemented: STRING,
SUBSTR and UNSPEC. The following are not implemented: IMAG,
ONCHAR, ONSOURCE, PAGENO, REAL.

27.2 COMPATIBILITY WITH ANSI STANDARD

27.2.1 Compatibility Philosophy

CPL was implemented with the philosophy that it must be a true subset
of the ANSI PL/I standard. This meant that any extensions to the
standard must be clearly documented as extensions, must be easy to
avoid by any programmer who wants to, and must not be easy to confuse
with a feature of the standard language. The last criterion is very
important, in that it means that, for example, a new option of the DO
statement would be unacceptable since it would be too easy to confuse
it with existing options.

The last criterion was, however, broken in two very important cases -
the default FLOAT rules and the use of the VFORM file option. These
incompatibilities were implemented only after many hours of agonizing
on the part of the implementor, and only after deciding that CPL's

27-4

COMPARISON OF CPL WITH ANSI PL/I STANDARD (R)

ease of use for the beginning user would be overwhelmingly improved.
In fact, the first chapter of this manual would simply have been
impossible to write under the default rules defined by the standard.

Of course, the first two criteria above are still valid, and a user
wishing to be fully ANSI standard can simply use the methods described
in the next section. In fact, CPL will be fully ANSI standard if the
user starts his session by inserting the statement:

1. DECLARE SYSPRINT PRINT; DEFAULT(RANGE(*» FIXED;

into his program.

27.2.2 List Of Incompatibilities

The following is a complete list of places where CPL is incompatible
with the ansi PLII standard. To write a fully standard program, you
must avoid these features.

1. All CPL variables default to FLOAT rather than FIXED, as the
standard specifies. To make your program completely
standard, insert a default statement which specifies defaults
for all variables. For example, you may insert:

1. DEFAULT (RANGE(*» FIXED;

to force CPL to make all your variables default to FIXED.
Or, you may insert

1. DEFAULT (RANGE(*» FLOAT;

so that when your program is moved to other systems, the
default of FLOAT will be carried over.

On some early implementations of PLII, the "I through N rule"
was used. This rule specifies that all variables default to
FLOAT except those whole first letters begin with I-N; these
default to FIXED. If you would like to be fully ANSI
standard and still be compatible with this rule, then you
should insert these statements in your program:

1. DEFAULT (RANGE(I:N» FIXED;
2. DEFAULT (RANGE(A:H) !RANGE(O:Z» FLOAT;

2. Default PUT LIST output to the SYSPRINT file is in "variable
format." Furthermore, the VFORM option of the ENVIRONMENT of
the FILE declaration permits the programmer to specify this
option for other output files. This option specifies that
when a FIXED or FLOAT quantity is printed by means of a PUT
LIST statement, the format used depends upon the value of the
quantity being printed. (For example, 2.3EO will be printed
as 2.3, rather than as 2.30000000E+OO).

The user wishing to write a fully standard program should
avoid the VFORM option, and should prevent the VFORM option
default for SYSPRINT by inserting this statement at the
beginning of his program:

3. DECLARE SYSPRINT FILE PRINT;

27-5

COMPARISON OF CPL WITH ANSI PL/I STANDARD (R)

Note, however, that one of the sample programs given in the
chapter entitled "CPL Programming Examples" shows how to
implement the variable format as a PL/I PROCEDURE.

3. The CLOSE FILES statement is not in the ANSI standard. If
you wish to write standard programs, then you should restrict
use of this statement to direct mode.

4. The DELAY statement is not in the ANSI standard, although it
is available in IBM implementations of PL/I.

5. The SNAP statement is not in the ANSI standard. However, the
SNAP option of the ON statement is standard.

6. The following mathematical built-in functions are not in the
ANSI standard, although they are available in some other PL/I
implementations: ACOS, ASIN, COSH, SINH.

7. The following built-in functions are not available to any
other PL/I implementation known to this implementor: DIVI,
DIVF, FLTED, ONMSG, RANDOM.

8. The ATTENTION ON-condition is not in the ANSI standard.

9. The "?" statement should be replaced by the PUT LIST
statement.

27-6

CHAPTER 28

RUNNING CPL UNDER TOPS-IO (R)

This chapter sows you how to run CPL if you are running under the
TOPS-IO operating system. Please refer to the next chapter for
information on running under the TOPS-20 operating system.

28.1 HOW TO LOG ON AND RUN CPL

This section shows you how to log on to the DECsystem-10.
already now how to log on, you may skip to the next section.

28.1.1 How To Log On

In order to begin using the system, do the following:

1. After you turn the terminal on, press the CTRL key.
is still in the down position, press the C key.
called "typing a Control-C."

If you

While it
This is

2. After you see the period (.), type the word LOGIN and press
the RETURN key.

3. After you see the #, type your project-programmer number and
press the RETURN key.

4. After you see the word
press the RETURN key.

PASSWORD:, type your password
Your password will not be printed.

and

Steps 1 through 4 above are called the logging-in procedure. Below is
an example of the logging-in procedure, where the underlined portion
is what you type:

.LOGIN <RETURN>
JOB 32 R5725D SYS #40/2 TTY73
#27,4072 <RETURN>
PASSWORD: <RETURN>
1131 2l-JAN-75 TUE

28-1

RUNNING CPL UNDER TOPS-IO (R)

28.1.2 How To Use A Telephone Connection

If the terminal you are using is not a local terminal (hooked directly
to the computer), you must make connection with the computer through
the use of a telephone. The procedure to establish this connection
is:

1. Turn on the terminal.

2. Check the speed setting of the terminal (most terminals are
labeled either 10 CPS (characters per second), 15 CPS and 30
CPS or 110 baud, 150 baud and 300 baud.) It should initially
be set to either 10 CPS or 110 baud.

3. Dial the phone number to the computer.

4. Wait for a steady tone (sometimes this is a high pitched
beep).

5. Lay the receiver in the slots provided for it either on the
terminal or on the acoustic coupler.

6. Wait for the carrier detect light to come on.

7. If you see nothing printed on
Control-C characters until you
words PLEASE LOGIN OR ATTACH.

the terminal, type two
see either a period or the

8. Follow the logging-in procedure listed above.

28.1.3 Running CPL

After you have logged in and the system has typed a "" to indicate
that you are DECsystem-10 monitor level, you may enter CPL by typing
the command:

.R CPL <RETURN>
CONVERSATIONAL PROGRAMMING LANGUAGE
*

After CPL has typed out the asterisk shown on the last line, CPL is
ready for commands.

28.2 HOW TO LOG OFF

This section shows you how to leave CPL and log off the DECsystem-lO.

28.2.1 How To Leave CPL

To leave CPL, type the command "MONITOR", or its abbreviation, "MON".

28-2

RUNNING CPL UNDER TOPS-IO (R)

28.2.2 How To Log Off

When you are finished using the system, do the following:
and press the RETURN key.

28.3 FORMAT OF A TOPS-IO FILE-SPECIFICATION

A file-specification is used in several CPL commands:

1. The LOAD, WEAVE and SAVE statements

2. The TITLE option of the OPEN statement

The format of a TOPS-IO file-specification is as follows:

dev:name.type[project-number,programmer-number]

Type KIF

Usually, any of these file fields may be omitted, and CPL will supply
a default.

The meanings of these fields and their default values are as follows:

1. The "dev" is the file device name, which specifies which
physical or logical device the file is on. If it is not
specified, then the default device is DSK, the disk.

EXCEPTION: In the TITLE option of the OPEN statement, if the
FILE option specifies either SYSIN or SYSPRINT, then the
default device is TTY, your terminal.

2. The "name" field is the file-name. Not all devices require a
file-name; however, if one is required then you must specify
it, since there is no default.

3. The "type" field is the file-type (also known as the
~filename extension" field). It may consist of up to 3
letters or digits. If no file extension is specified, then
the default file-type is the following:

1. In the case of the TITLE option of the OPEN statement,
the default file-type is DT (for "data").

2. In the case of the LOAD, SAVE or WEAVE statement, the
default file-type is CPL.

4. The "project-number" and "programmer-number" fields each
consist of one to six octal digits. If you do not specified
a ppn (project-programmer-number), then your own ppn will be
used as the default.

28-3

CHAPTER 29

RUNNING CPL UNDER JOPS-20 (R)

This chapter shows you how to run CPL if you are running under the
TOPS-20 operating system. Please refer to the preceding chapter for
information on running under the TOPS-IO operating system.

29.1 HOW TO LOG ON AND RUN CPL

This section shows you how to log on to the DECsystem-20. If you
already know how to log on, you may skip to the next section.

29.1.1 How To Log On

In order to begin using the system, do the following:

1. Get someone to show you how to turn on the computer terminal.

2. After you turn on the terminal, press the
and, at the same time, type the letter C.
typing Control-C.)

key labeled CTRL
(This is known as

3. After you see the "@" character, type LOGIN, and press the
key labeled ESC. (On some terminals, this key is labeled
ESCAPE or 'ALT or ALTMODE.) In the example displayed later in
this section, the ESC key is shown as a dollar sign ($).

4. After the system prints (USER), type your user name and press
the ESC key again.

5. After the system prints (PASSWORD), type your password and
press the ESC key.

6. After the system prints (ACCOUNT), type your account number
and press the key labeled RETURN (or CR).

Below is an example of how you would log in if your user name were
PORADA, your password were WILKS, and your account number were 10300.
The portions that you type are underlined; all other parts are typed
by the operating system.

V 1.02.36, TOPS-20 DEVELOPMENT MONITOR, 19-JAN-72. TOPS-20 1(100)
@LOGIN$ (USER) PORADA$ (PASSWORD) ~ (ACCOUNT) 10300

JOB 17 ON TTY20 19-JAN-76 13:00
@

29-1

RUNNING CPL UNDER TOPS-20 (R)

29.1.2 HOW TO USE A TELEPHONE CONNECTION

If the terminal you are using is not directly connected to the
computer, you must connect to the computer via a telephone. The
procedure for obtaining this type of connection is:

1. Turn on the computer terminal.

2. Check the speed setting of the terminal. Most terminals are
labeled in either characters per second (CPS) or bits per
second (baud). If your terminal is labeled in CPS, set it to
30 CPS. If your terminal is labeled in baud, set it to 300
baud.

3. Dial the phone number to the computer.

4. Wait for a steady ton. Sometimes the tone is a high-pitched
beep.

5. Place the telephone receiver in the slots provided for it in
either the terminal or the acoustic coupler.

6. Wait for the carrier detect light to come on.

7. At this point, if nothing has been printed on the terminal,
press the key labeled CTRL (or CONTROL) and, at the same
time, type a C.

8. Follow the logging-in procedure listed above.

29.1.3 Running Cpl

After you have logged in, and the system has typed a "@" to indicate
that you are at the DECsystem-20 monitor level, you may enter CPL by
typing the command:

@CPL
CONVERSATIONAL PROGRAMMING LANGUAGE

*
After CPL has typed out the asterisk shown on the last line, CPL is
ready for commands.

29.2 HOW TO LOG OFF

This section shows you how to leave CPL and log off the DECsystem-20.

29.2.1 How To Leave CPL

To leave CPL, type the command "MONITOR," or its abbreviation "MON."

29-2

RUNNING CPL UNDER TOPS-20 (R)

29.2.2 How To Log Off

When you are finished using the system, do the following: Type LOGOUT
and press the RETURN key.

29.3 FORMAT OF A TOPS-20 FILE-SPECIFICATION

A file-specification is used in several CPL commands:

1. The LOAD, WEAVE and SAVE statements

2. The TITLE option of the OPEN statement

The format of a TOPS-20 file-specification is as follows:

dev:<dir>name.type.gen .

Usually, any of these file fields may be omitted, and CPL will supply
a default.

The meanings of these fields and their default values are as follows:

1. The "dev" is the file device name, which specifies which
physical or logical device the file is on. If it is not
specified, then the default device is DSK, the disk.

EXCEPTION: In the TITLE option of the OPEN statement, if the
FILE option specifies either SYSIN or SYSPRINT, then the
default device is TTY, your terminal.

2. The "dir" field is the directory-name, consisting of up to 39
alphanumeric (including hyphen, dollar sign and underline)
characters. The directory-name is enclosed in angle
brackets. If you do not specify a directory-name, then the
default is your own personal directory.

3. The "name".field is the file-name, consisting of up to six
alphanumeric characters. Not all devices require a
file-name; however, if one is required then you must specify
it, since there is no default.

4. The "type" field is the file-type. It may consist of up to 3
letters or digits. If no file-type is specified, then the
default file-type is the following:

1. In the case of the TITLE option of the OPEN statement,
the default file-type is DT (for "data").

2. In the case of the LOAD, SAVE or WEAVE statement, the
default file-type is CPL.

29-3

CHAPTER 30

CPL PROGRAMMING EXAMPLES (B-D)

This chapter gives some examples of complete programs, illustrating
both simple and advanced features of CPL.

30.1 SIMPLE PROGRAM TO TYPE PRIME NUMBERS (B)

10. /* THIS PROGRAM TYPES OUT PRIME NUMBERS */;
20. /* ALL PRIMES IN THE SPECIFIED RANGE ARE TYPED */;
30. /* COPYRIGHT 1976 BY DIGITAL EQUIPMENT CORPORATION */;
40. /* WRITTEN JANUARY 1976 BY JOHN XENAKIS */;
50. START = 3;
60. END=lOOO;
70. DO I START TO END BY 2;
80. DO;
90. DO J = 3 TO SQRT(I) BY 2;

100. IF MOD(I,J) = 0 THEN GO TO NO_PRIME;
110. END;
120. PUT LIST(I);
130. END;
140. NO PRIME:
150. END;

This program illustrates the following features:

1. The MOD built-in function, which returns the remainder which
results from dividing the two arguments.

2. DO-groups, IF statements, and structured programming.

For extra practice, you may try the following problems:

1. Change statements 50 and 60 so that a different range of
prime number is typed out.

2. Use PUT SKIP to make each prime print out on a separate line.

30-1

30.2

10.
20.
30.
40.
50.
60.
70.
80.
90.

100.

CPL PROGRAMMING EXAMPLES (B-D)

TABLE OF SINES AND COSINES (B)

/* THIS PROGRAM TYPES OUT A TABLE OF SINES AND */;
/* COSINES IN THE RANGE 0 TO PI IN INCREMENTS */;
/* OF 0.2. */;
/* COPYRIGHT 1976 BY DIGITAL EQUIPMENT CORPORATION */;
/* WRITTEN JANUARY 1976 BY JOHN XENAKIS */;
PUT EDIT('X', 'SIN(X)', 'COS(X) ') (COL(3) ,A(6) ,A(lO) ,A);
PI = 3.14159;
DO X = 0 TO PI BY .2;
PUT SKIP EDIT(X,SIN(X) ,COS(X)) (F(4,1),2 F(10,6));
END;

This program illustrates the following CPL features:

1. The SIN and COS mathematical built-in functions

2. The PUT EDIT statement with the "F" format item.

For extra practice, try the following:

1. Type out a table of other functions (LOG, EXP, etc.)

2. Change the F format item to E, and experiment with other
forms of output.

3. Cause the output to be directed to a disk file, by inserting
the statement

55. OPEN FILE(SYSPRINT) TITLE('DSK:X.DT');

to cause output to go to the disk file X.DT.

30-2

30.3

1.
2.
3.
4.
5.
6.

10.
20.
30.
40.
50.
60.
70.
80.
90.

100.
110.
120.
130.
140.
150.
160.
170.
180.
190.
200.
210.

CPL PROGRAMMING EXAMPLES (B-D)

MAKE A "CONCORDANCE OF LETTERS" (C)

/* THIS PROGRAM ACCEPTS AN INPUT LINE FROM THE */;
/* TERMINAL, AND TYPES OUT A "CONCORDANCE" OF THE */;
/* NUMBER OF TIMES EACH LETTER OF THE ALPHABET */;
/* APPEARS IN THAT LINE. */;
/* COPYRIGHT 1976 BY DIGITAL EQUIPMENT CORPORATION */;
/* WRITTEN FEBRUARY 1976 BY JOHN XENAKIS */;
DECLARE S CHAR(200) VAR;
DECLARE ALPH CHAR(26);
ALPH = SUBSTR(COLLATE() ,66,26);
DECLARE COUNT(26);'
DO WHILE(l=l);
PUT SKIP LIST('TYPE LINE: ');
READ FILE(SYSIN) INTO(S);
UNSPEC(COUNT) = "B;
DO J = 1 TO LENGTH(S);
I = INDEX(ALPH,SUBSTR(S,J,l));
IF I > 0 THEN COUNT(I) = COUNT(I) + 1;
END;
PUT SKIP;
DO I = 1 TO 26;
PUT EDIT(SUBSTR(ALPH,I,l)) (X(l) ,A);
END;
PUT SKIP;
DO I = 1 TO 26;
PUT EDIT (COUNT (I)) (F(2));
END;
END;

This program illustrates the following CPL features:

1. CHARACTER string declarations

2. Using the SUBSTR and COLLATE built-in functions to obtain the
entire alphabet.

3. Arrays (the COUNT array is declared in statement 40)

4. The READ statement, which allows you to input a CHARACTER
string which is not enclosed in quotes.

5. The A format item

6. The LENGTH and INDEX built-in functions.

7. The use of the UNSPEC pseudo-variable as a trick to zero out
an entire array.

For additional practice, do the following:

1. Print out the letters in a different format.

2. Extend the "concordance" so that it handles additional
characters (like punctuation, digits, etc.)

3. Change the program so that it does not use the COLLATE
built-in function or the UNSPEC pseudo-variable

30-3

CPL PROGRAMMING EXAMPLES (B-D)

30.4 HEXADECIMAL ADDING MACHINE (C)

10.
20.
30.
40.
45.
46.
50.
55.
60.
70.
80.
81.
82.
83.
90.

100.
110.
120.
125.
130.
140.
150.
160.
170.

/* HEXADECIMAL ADDING MACHINE */;
/* COPYRIGHT 1976 BY DIGITAL EQUIPMENT CORPORATION */;
/* WRITTEN FEBRUARY, 1976, BY JOHN XENAKIS */;
DCL S CHAR(40} VAR;
DCL (SUM,SUMMAND) FIXED;
DCL BE BIT(36) ;
DO WHILE(l=l);
PUT SKIP LIST('TYPE FIRST SUMMAND');
SUM = 0;
READ FILE(SYSIN) INTO(S);
DO WHILE (LENGTH (S) > 0);
SIGN = 1;
IF SUBSTR(S,l,l)='-' THEN SIGN = -1;
IF INDEX('+-',SUBSTR(S,l,l)}>O THEN S=SUBSTR(S,2);
S = ""! !COPY('0' ,9-LENGTH(S)}! !S!!" 'B4 ';
GET STRING(S} LIST(BB);
UNSPEC(SUMMAND) = BB;
SUM = SUM + SIGN * SUMMAND;
PUT LIST('ENTER NEXT SUMMAND');
READ FILE(SYSIN) INTO(S);
END;
IF SUM < 0 THE N PUT E,D I T ('- ') (A) ;
PUT EDIT(SUM) (B4);
END;

This program illustrates the following CPL features:

1. The B4 format item for hexadecimal output

2. The use of GET STRING

3. The use of B4 to indicate a hexadecimal bit string

4. The use of the UNSPEC built-in function and pseudo-variable
to perform machine-dependent bit-string manipulations

You probably will not understand the above example unless you
understand the 36-bit format of a DECsystem-lO/20 word.

For additional practice, try the following:

1. Change each occurrence of "B4" to "B3" so that the program
becomes an octal adding machine.

2. Use an ON ERROR statement so that if the person running the
program types in an illegal character, the program will
continue executing.

30-4

CPL PROGRAMMING EXAMPLES (B-D)

30.5 PROCEDURE TO SIMULATE "VFORM" FILE ATTRIBUTE (D)

1. /* PROGRAM WHICH IMPLEMENTS THE 'VFORM' ATTRIBUTE */;
2. /* COPYRIGHT 1976 BY DIGITAL EQUIPMENT CORPORATION */;
3. /* WRITTEN JANUARY 1976 BY JOHN XENAKIS */;

10. VFORM: PROC(X) RETURNS (CHAR(40) VAR);
20. DECLARE (X,Y,Z) FLOAT;
30. DECLARE CC CHAR(40) VAR;
35. DECLARE SO FIXED;
40. DECLARE (N,I) FIXED;
45. DECLARE S CHAR(l) VAR;
50. IF X=O THEN RETURN('O');
60. Y=ABS(X);
70. IF Y > lE-29 THEN DO;
75. I = 8;
80. UNSPEC(Z)=SUBSTR(UNSPEC(Y) ,1,9) !!SUBSTR(UNSPEC(I) ,10);
90. Y=Y+Z;

100. END;
101. SO = 8; /* # SIGNIFICANT DIGITS */;
105. IF X<O THEN S='-'; ELSE S=' ';
110. CC = SIGN(X)*Y;
120. N = SUBSTR(CC,SD+4)+1;
130. DO I = SD+l TO 4 BY -1 WHILE(SUBSTR(CC,I,l)='O');
140. END;
150. 1=1-2;
160. IF N>8!N<-8 THEN IF 1=1 THEN DO;
170. RETURN(S!!SUBSTR(CC,2,1} !!SUBSTR(CC,SD+3}};
175. END;
180. ELSE RETURN(S!!SUBSTR(CC,2,I+l} !!SUBSTR(CC,SD+3});
200. CC=SUBSTR(CC,2,1}! !SUBSTR(CC,4,SD-l);
210. CC=SUBSTR(CC,l,I);
220. IF N>=O THEN DO;
230. IF I<N THEN RETURN(S!!CC!!COPY('O',N-I)};
240. IF I=N THEN RETURN(S!!CC};
250. RETURN(S! !SUBSTR(CC,l,N}!!'.'! !SUBSTR(CC,N+l}};
260. END;
270. RETURN(S !! ' , !! COPY('0' ,-N} !! CC};
280. END VFORM;

This program consists of a function PROCEDURE which returns a
character string. If you type "XEQ" you will not get any output since
there are no statements in the program which invoke the VFORM
procedure.

To invoke this function, type something like the following:

? V F 0 R~l (2 3 4 • 5)

The VFORM function simulates the effect of the non-standard VFORM file
attribute. It takes a floating point number as an argument and
returns a "variable format" representation of that number as a
character string.

This program illustrates the following CPL features:

1. A function PROCEDURE which returns a CHARACTER string

2. The SUBSTR built-in function for bit strings.

30-5

CPL PROGRAMMING EXAMPLES (B-D)

3. The UNSPEC built-in function and pseudo-variable

4. The COpy built-in function

5. A DO-clause with a negative "BY" increment

If you would like additional practice, try the following:

1. Change the format so that it types out a plus sign if the
number is positive.

2. Change the format so that it types a maximum of 6 significant
digits.

3. Change the format so that it switches to an "E" type format
when the number is greater than lE6 rather than lE8.

4. If you have available to you an implementation of PL/I on
another machine, convert this PROCEDURE to run on that
machine. Statements 70 through 101 are machine dependent and
will have to be changed. Statements 70 through 100 "round"
the argument to prevent output of the form "1.9999999" rather
than "2". Statement 101 sets SD to the number of significant
digits in a floating-point number.

If you do that, then you will have a way of printing variable
formats on other implementations of PL/I.

30-6

CPL PROGRAMMING EXAMPLES (B-D)

30.6 FORMAT CPL PROGRAMS FOR OTHER PL/I IMPLEMENTATIONS (C)

10. DECLARE S CHAR(250) VAR;
20. DECLARE (IN INPUT, OUT OUTPUT) FILE RECORD;
30. DECLARE CTAB CHAR(l); CTAB=SUBSTR(COLLATE() ,10,1);
40. DECLARE CCONT BIT(l);
50. DECLARE PNAME CHAR(31) VAR;
60. ON UNDEFINEDFILE(IN).BEGIN;?ONMSG(); GO TO GETIN: END;
70. GETIN: PUT SKIP LIST('INPUT FILE: ');
80. READ FILE(SYSIN) INTO(S);
90. OPEN FILE(IN) TITLE(S);

100. ON UNDEFINEDFILE(OUT) BEGIN;?ONMSG(); GOTO GETOUT;END;
110. GETOUT: PUT SKIP LIST('OUTPUT FILE: ');
120. READ FILE(SYSIN) INTO(S);
130. OPEN FILE(OUT) TITLE(S);
140. PUT SKIP LIST('PROGRAM NAME:');
150. READ FILE(SYSIN) INTO(PNAME);
160. S = , , !! PNAME !! ': PROC OPTIONS (MAIN) : ' ;
170. WRITE FILE(OUT) FROM(S);
180. S = ' DFT (RANGE(*» FLOAT:';
190. WRITE FILE (OUT) FROM(S);
200. ON ENDFILE(IN) GO TO CLOSE;
210. CCONT = 'O'B;
220. DO WHILE(l=l);
230. READ FILE(IN) INTO(S);
240. IF ACCONT THEN S = AFTER(S,CTAB);
250. CCONT = SUBSTR(S,LENGTH(S) ,1) = '&':
260. IF CCONT THEN S = SUBSTR(S,l,LENGTH(S)-l);
270. S =' '!! S:
280. WRITE FILE(OUT) FROM(S);
290. END;
300 . C LOS E : S = ' END ' !! PNAME !! ';';
310. WRITE FILE(OUT) FROM(S);
320. CLOSE FILE(IN) ,FILE(OUT);

CPL programs contain line numbers and continuation characters which
are not used in other PL/I implementations. This program reads a file
containing a CPL program and writes out a disk file containing the
program in a format which other implementations use.

This program illustrates the following CPL features:

1. A utility program which reads one file, modifies it, and
writes a new file as output.

2. A factored FILE declaration in statement 20
identifiers IN and OUT.

3. The ON-conditions UNDEFINEDFILE and ENDFILE.

4. The READ and WRITE statements.

5. The OPEN statement for an arbitrary disk file.

For additional practice, try the following:

for the

1. Modify the program so that it removes all tabs from the file.

30-7

CPL PROGRAMMING EXAMPLES (B-D)

2. Modify the program so that it will flag the use of those CPL
built-in functions which are not in the ANSI standard.

3. Rewrite the program so that it goes in the other direction
takes a PL/I program written on some other machine and
transforms it to the CPL format.

30-8

CPL PROGRAMMING EXAMPLES (B-D)

30.7 PROGRAM WHICH PRINTS ITS OWN SOURCE (D)

Consider the following problem:

Write a program which print~ its own source, but which does not read
any input files.

This problem was posed to the author in 1968. He did not solve it
until 2 years later.

The following is a solution for CPL. The LIST and XEQ statements will
produce the same identical output, even to the comments.

If you type this program in, you must be certain that every line
number and character is exactly as shown, even in the comments.

100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
Ill.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.

/* COPYRIGHT 1976 BY DIG EQUIPMENT CORP */;
/* WRITTEN 2/76 BY JOHN XENAKIS */;
DECLARE S(104:122) CHAR(60) VAR;
DECLARE TABS CHAR(2), DOL CHAR(l);
S(104)='/* COPYRIGHT 1976 BY DIG EQUIPMENT CORP */;';
S(105)='/* WRITTEN 2/76 BY JOHN XENAKIS */; ';
S(106)='DECLARE S(104:122) CHAR(60) VAR; ';
S(107)='DECLARE TABS CHAR(2), DOL CHAR(l); ';
S(108)='TABS=COPY(SUBSTR(COLLATE() ,10,1) ,2) ;';
S(109)='DOL=SUBSTR(COLLATE() ,37,1) /* DOLLAR */;';
S(110)='C=104-1; ';
S(lll)='DO L=100 TO 137; ';
S(112)='PUT SKIP EDIT(L,$.$,TABS) (F(4),2 A); ';
S(113)='IF L)103&L<123 THEN DO;';
S(114)='PUT EDIT($S($,L,$)=$$$) (A,F(3) ,A);';
S (115) = 'PUT ED I T (S (L) , $ $ $; $) (A) ; , :
S (116) = ' END: ' ;
S(117)='ELSE DO:':
S(118)='C=C+l:':
S (119) =' PUT EDIT (TRANSLATE (S (C) , $$$$,DOL)) (A) ; ';
S(120)='END:' :
S (121) = ' END; , ;
S(122)='PUT SKIP; ';
TABS=COPY(SUBSTR(COLLATE() ,10,1) ,2);
DOL=SUBSTR(COLLATE() ,37,1) /* DOLLAR */;
C=104-1;
DO L=100 TO 137;
PUT SKIP EDIT(L, '.' ,TABS) (F(4),2 A);
IF L)103&L<123 THEN DO;
PUT EDIT (, S (, , L, ,) = ' , ') (A, F (3) , A) ;
PUT EDIT(S(L), "'; ') (A);
END;
ELSE DO:
C=C+l :
PUT EDIT (TRANSLATE (S (C) , , , , , ,DOL)) (A) :
END;
END;
PUT SKIP;

This program illustrates the following CPL features:

30-9

CPL PROGRAMMING EXAMPLES (6-0)

1. CHARACTER string arrays

2. The use of SUBSTR and COLLATE built-in functions to obtain
special characters (in this case, tab and dollar sign)

3. The COpy and TRANSLATE built-in functions

4. PUT EDIT with the A format item

For extra practice, try doing the same thing in FORTRAN.

30-10

CHAPTER 31

LIST OF CPL ABBREVIATIONS (R)

CPL provides abbreviations for certain keywords and built-in
functions. The abbreviations themselves are keywords or built-in
functions and CPLL will recognize them as synonymous in every respect
with the full denotationss, except that in the case of built-in
functions the abbreviations have separate declarations and name
scopes.

ALLOCATE
ALLOCATION
ATTENTION
AUTOMATIC
CHARACTER
CONDITION
CONTROLLED
CONTINUE
CONVERSION
DECLARE
DEFAULT
DIMENSION
ENVIRONMENT
EXECUTE
FIXEDOVERFLOW
INITIAL
MONITOR
OVERFLOW
PARAMETER
POINTER
PROCEDURE
SEQUENTIAL
STRINGRANGE
STRINGSIZE
SUBSCRIPTRANGE
THROUGH
UNDEFINEDFILE
UNDERFLOW
VARYING
ZERODIVIDE

ALLOC
ALLOCN
ATTN
AUTO
CHAR
COND
CTL
CONT
CONV
DCL
DFT
DIM
ENV
XEQ
FOFL
INIT
MON
OFL
PARM
PTR
PROC
SEQL
STRG
STRZ
SUBRG
THRU
UNDF
UFL
VAR
ZDIV

31-1

CHAPTER 32

CPL SUMMARY (R)

This chapter is a short reference summary of the CPL language. It
includes examples of all the program elements and statements.

32.1 PROGRAM ELEMENTS

Identifiers are 1 to 31 characters. The characters are all letters
and digits and the "break" character, "" The first character must
be a letter.

FIXED constants: 2, 23, 34567.

FLOAT constants: 2.3, 4.5ElO, 3.9876992E-20.

CHARACTER constants: 'ABC123', 'THAT"S OK'.

BIT constants: 'OlOOl'B, '032l3'B2, '0374573'B3, '029CDFAB53'B4.

Repetition factors: (5) 'AB' is same as 'ABABABABAB'.
same as 'lOllOl'B.

Arithmetic operators: +, -, *, I, ** (exponentiation)

Comparison operators: =, ~=,)=, <=,), <, A), ~<

Logical operators: (or), & (and), ~ (not)

Concatenation operator: !!

Comments: 1* *1

Line numbers: 1.00 to 9999.99

Direct statements: "A=5:" is executed immediately.

(2)'lOl'B is

Collect statements: "10.3 A=5" is saved as part of the collect
program.

32-1

CPL SUMMARY (R)

32.2 DIRECT-ONLY STATEMENTS

LIST 10, 50 THRU 60, 1000 THRU
your program.

... , lists the indicated statements in

ERASE 20.34~ erase statement 20.34.

ERASE THRU •.• ~ erase entire program, resetting all storage.

SAVE 'DSKC:PROG.C[10,3701]'~ save program in specified file.

LOAD 'PROG'~ load program from file PROG.CPL.

NUMBER 100 BY 5~ generate automatic line numbers starting from 100
and continuing 105, 110, etc. To terminate automatic line numbering
mode, type the single character "I", followed by a carriage return.

LOAD 'PROG' NUMBER 3000~ load PROG.CPL, renumbering the statements
starting from 3000.

WEAVE 'NEWPRG' NUMBER 2000~ load 'NEWPRG.CPL' without erasing the
existing program, so that the two programs will be combined.

XEQ; execute the program.

XEQ FROM 21.3; execute program starting from statement 21.3.

CONTINUE; continue after a breakpoint, cr reexecute the statement
causing an error.

CONTINUE FROM 2310; continue executing from statement 2310.

BREAK 22+4; set breakpoint on fifth statement on line 22.

NOBREAK 22+4; remove this breakpoint.

NOBREAK; remove all breakpoints.

MONITOR~ return to monitor.

32.3 DECLARATIVE AND STORAGE ALLOCATION STATEMENTS

DEFAULT (RANGE(I:N}) FIXED;
beginning with letters I
default to FLOAT.

sets the
through

"I-N" rule: all
N default to FIXED;

identifiers
all others

DECLARE A FIXED, (B,C) FLOAT~ makes A FIXED, and Band C FLOAT.

DECLARE Cl CHAR(lOO}, C2 CHAR(23} VAR; makes Cl CHARACTER with fixed
length 100, and C2 CHARACTER with varying length less than or equal to
23.

DECLARE Bl BIT(lOO}, B2 BIT(23} VAR~ same for BIT.

DECLARE ARR(10,2:5}; declares a two-dimensional array, with the first
subscript ranging from 1 to 10 and the second subscript ranging from 2
to 5.

32-2

CPL SUMMARY (R)

ALLOCATE A; allocates CONTROLLED identifier A.

FREE A; frees CONTROLLED identifier A.

32.4 ASSIGNMENT AND FLOW OF CONTROL STATEMENTS

A=B+LOG(F+2); assign to A the value of the expression to the right of
the equal sign.

LABl: A=5; the assignment statement "A=5" is given th~ statement
label LABI.

GO TO LABl; transfers control to the statement with label LABI.

IF 1>5 THEN A=I+2; ELSE GO TO XYZ; specifies that the action to be
taken depends upon whether I is greater than 5.

IF 1>5 THEN DO; ••. , END; ELSE DO; ... , END; allows the user to
specify a group of statements for the THEN and ELSE clauses. (The
statements in the group may be placed on individual lines.)

DO wHILE (A<=B+5) ; .•. , END; Keep executing the group of statements
as long as A remains less than or equal to B+5.

DO 1=3,5,6 TO 9,15; .•. , END; Execute the group of statements. The
variable I will take on the values 3, 5, 6, 7, 8, 9 and 15.

DO 1=1 REPEAT(I+I) WHILE(I<=32); ••. , END; Execute the group of
statements. The variable I will assume the values 1, 2, 4, 8, 16 and
32.

STOP; causes program execution to stop.

DELAY(2000); will cause CPL to go to sleep for 2000 milliseconds (2
seconds) .

32.5 ON CONDITIONS AND ERROR HANDLING

ON ERROR SNAP GO TO RESTART; specifies that if any program error
occurs, type out a snap dump and then transfer to the statement with
label RESTART.

ON ENDFILE(F) BEGIN; CLOSE FILE(F); GO TO END FILE; END; specifies
that when end of file is reached in reading file F, then close file F
and transfer to the statement with label END FILE.

ON ERROR SYSTEM; specifies that if an error occurs from that point
on, the standard system action (usually to type an error message and
halt execution) is to take place.

SIGNAL ENDFILE(F); specifies that the named condition is to be raised
artificially, so that the ON-unit for that condition can be invoked.

REVERT ERROR; specifies that any ON-unit or SYSTEM option specified
for the ERROR condition in the current block is to be canceled, and
the status of the ERROR condition is to be the same as it was when the
current block was entered.

32-3

CPL SUMMARY (R)

LIST OF ON-CONDITIONS

Here is a list of the condition names, and the occurences which cause
the conditions to be raised:

1. SUBSCRIPTRANGE -- array subscript is out of range

2. STRINGRANGE -- argument to SUBSTR is out of range

3. ZERODIVIDE -- division by zero

4. ENDFILE(filename) -- end of file on input

5. UNDEFINEDFILE(filename) -- file cannot be opened

6. RECORD{filename) -- record length error in READ statement

7. ERROR -- error for which no other established ON-unit applies

8. CONDITION(ident) -- programmer-named condition; may only be
raised by means of SIGNAL statement

9. ATTENTION condition
executing

32.6 INPUT/OUTPUT STATEMENTS

Control-C typed while program is

PUT LIST{A,B+C); type out the values of A and of B+C.

?A,B+C; ? .. is an abbreviation for PUT LIST(.•.).

GET LIST{X,Y,Z); reads the values of the variables X, Y and Z from
the terminal.

PUT EDIT{A,B+C) (F{2) ,E{12,3»; prints the values of A and B+C in the
specified formats. A complete list of format items is given below.

PUT STRING{S) LIST(A,B+C); stores the values of A and of B+C into the
CHARACTER string S.

GET STRING{S!!' 2 ') LIST(X,Y,Z); obtains the values of X, Y and Z
from the CHARACTER string expression S!!' 2 '.

In the following, assume F has been DECLAREd to be a FILE.

PUT FILE{F) SKIP LIST(A,B); puts the values of A and B into the file
F at the beginning of a new line.

GET FILE{F) LIST(X,Y); gets the values of X and Y from file F.

OPEN FILE(F) TITLE('XYZ.MAC'); opens file XYZ.MAC for input.

OPEN FILE(F) OUTPUT; opens file DSK:F.DT for output.

READ FILE{F) INTO(C); reads a record from RECORD file F into the
CHARACTER scalar C.

32-4

CPL SUMMARY (R)

READ FILE(F) IGNORE (5) ; skips 5 records in file F.

WRITE FILE(F) FROM(C); writes a record into file F from the CHARACTER
scalar C.

CLOSE FILE(F); close file F.

CLOSE FILES; close all open files.

32.7 PUT EDIT FORMAT ITEMS

In all of these, w is the width of the field.

DATA FORMAT ITEMS

1. F(w) -- integer

2. F(w,d) -- d digits after the decimal point

3. E(w) -- E-type constant, with 7 digits after the decimal
point and 8 significant digits

4. E(w,d) -- E-type constant, with d digits after the decimal
point and (d+l) significant digits

5. E(w,d,s) -- E-type constant, with d digits after the decimal
point and s significant digits.

6. A[(w)] CHARACTER

7. B[(w)] or Bl[(w)] BIT

8. B3[(w)] BIT in octal format

9. B4[(w)] BIT in hexadecimal format

10. B2[(w)] BIT as base 4 integer format

CONTROL FORMAT ITEMS

1. X(w) -- print w blanks

2. SKIP[(n)] -- skip n blank lines

3. PAGE -- skip to new page

4. COLUMN(n) move to the n'th column on the page

REMOTE FORMAT ITEM

R(label) -- use the specified FORMAT statement

32-5

CPL SUMMARY (R)

32.8 SUMMARY OF BUILT-IN FUNCTIONS

The following chart summarizes the built-in functions supported by
CPL.

Function #Args Meaning

ABS
CEIL
DIVF(*}
DIVI(*}
FLOOR
MAX
MIN
MOD
SIGN
TRUNC

ACOS(*}
ASIN(*}
ATAN
ATAND
COS
COSD
COSH(*}
EXP
LOG
LOGIO
LOG2
RANDOM(*}
SIN
SIND
SINH(*}
SQRT
TANH(*}

ARITHMETIC
1
1
2
2
1
>=2
>=2
2
1
1

BUILT-IN FUNCTIONS
Compute absolute value
Compute least integer not less than argument
Take FLOAT quotient of two arguments
Take integer quotient of two arguments
Take greatest integer not exceeding argument
Compute maximum of arguments
Compute minimum of arguments
Compute remainder in dividing two arguments
Return +1, 0 or -1 depending upon sign of arg
Truncate argument to integer

MATHEMATICAL BUILT-IN FUNCTIONS
1 Compute arccosine in radians
1 Compute arcsine in radians
1,2 Compute arctangent in radians
1,2 Compute arctangent in degrees
1 Compute cosine of argument in radians
1 Compute cosine of argument in degrees
1 Compute hyperbolic cosine
1 Compute e (=2.7L828~ ••) to power of arg
1 Compute natural logarithm of argument
1 Compute common logarithm of argument
1 Compute logarithm to base 2
o Compute random number in interval (0,1)
1 Compute sine of argument in radians
1 Compute sine of argument in degrees
1 Compute hyperbolic sine of argument
1 Compute square root of argument
1 Compute hyperbolic tangent of argument

(*) Function not in ANSI standard

32-6

CPL SUMMARY (R)

Function #Args Meaning

********** STRING-HANDLING BUILT-IN FUNCTIONS
AFTER
BEFORE
COLLATE
COpy
EVERY
FLTED(*)
HIGH
INDEX
LENGTH
LOW
REVERSE
SOME
STRING
SUBSTR
TRANSLATE
UNSPEC
VERIFY

DIMENSION
HBOUND
LBOUND

ADDR
ALLOCATION
NULL

DATE
ONMSG(*)
TIME

RANDOM(*)
STRING
SUBSTR
UNSPEC

2
2
o
2
1
3-5
1
2
1
1
1

1
2,3
2,3
1
2

Return string following pattern string
Return string before pattern string
Return ASCII collating sequence
Perform concatenations of string with itself
Test whether every bit is on
Format floating point number
Return highest character in collating sequence
Search for pattern string
Return length of string
Return lowest character in collating sequence
Reverse string
Test whether any bit is set
Concatenate elements of NONVARYING string array
Take substring of string
Translate characters in string
Return BIT-string representation of argument
Verify validity of characters in string

ARRAY BUILT-IN FUNCTIONS
2 Return size of array dimension
2 Return upper bound of array dimension
2 Return lower bound of array dimension

STORAGE CONTROL BUILT-IN FUNCTIONS
1 Return address (POINTER data type) of argument
1 Return # of allocations of CONTROLLED ident
o Return null POINTER value

MISCELLANEOUS BUILT-IN FUNCTIONS ~ .
o Return current date as character strlng
o Return error message for error invoking ON-unit
o Return current time as character string

PSEUDO-VARIABLES
o Initialize random number generator
1· Assign to concatenated NONVARYING string array
2,3 Assign to substring of string
1 Assign to bit string representation of argument

(*) Function not in ANSI standard

INDEX

? statement
definition, 11-1
example in summary, 32-4
other references, 1-1, 27-6
ref in error messages, 25-12

A format item
definition, 13-2, 13-6
description in summary, 32-5
other references, 27-3
sample program, 30-3, 30-10

Abbreviations
list of, 31-1
use of, 2-3

Abnormal termination
of BEGIN/END blocks, 15-4, 18-4
of DO/END group, 9-3, 9-7
of ON-units, 18-4
of PROCEDURE/END blocks, 15-4

ABS built-in function
definition, 23-3
other references, 1-3, 32-6

ACOS built-in function
definition, 23-3
other references, 27-6, 32-6
ref in error messages, 25-20

Addition operator, 7-2
ADDR built-in function

definition, 19-2, 23-3
other references, 19-7, 32-7
ref in error messages, 25-7,

25-13, 25-17, 25-52 to 25-53
used as POINTER qualifier, 19-7

AFTER built-in function
definition, 23-3
other references, 32-7

ALL BLOCKS RESET message, 25-10
ALL STORAGE RESET message, 4-3,

25-9
ALLOCATE statement

definition for BASED, 19-13
definition for CONTROLLED,

16-4, 19-13
example in summary, 32-2
other references, 19-1, 19-14,

20-2, 27-1
ref in error messages, 25-2,

25-6, 25-10, 25-14, 25-34,
25-36, 25-43, 25-47,
25-51, 25-53

ALLOCATION built-in function
definition, 23-4
other references, 16-5, 32-7
ref in error messages, 25-11,

25-61
Alphabetic chars, defined, 2-1
Alternate keywords, 2-3
And logical operator, 7-4

ANSI PL/I standard, 7-2, 11-2,
13-10, 14-3 to 14-4, 14-6,
14-10, 18-3, 21-1, 23-3 to
23-4, 23-6 to 23-8, 23-11
to 23-13, 25-39, 26-1,
26-4, 27-1, 27-5,
30-5, 30-8, 32-6 to 32-7

APPEND file attribute
definition, 14-4
other references, 14-3

Arguments
BASED, 19-10
data type, 17-3
introduction, 17-2
matching to parameters, 17-7
POINTER data type, 19-10

Arrays
BASED arrays, 19-6
definition, 10-1
other references, 27-3
sample program, 30-3, 30-10
with DECLARE statement, 5-2

ASCII character code, 19-5
ASIN built-in function

definition, 23-4
other references, 27-6, 32-6
ref in error messages, 25-20

Assignment statement
definition, 7-1
example in summary, 32-3
other references, 1-3, 19-11,

27-1
ref in error messages, 25-13,

25-40
AT AN built-in function

definition, 23-4
other references, 32-6

ATAND built-in function
definition, 23-4
other references, 32-6

ATTENTION condition
definition, 18-7
description in summary, 32-4
other references, 27-6
ref in error messages, 25-13

Attribute factoring in DECLARE
statement, 5-3

Attributes
AUTOMATIC, 5-2 to 5-3
BASED, 5-2
BIT, 6-2, 7-3, 7-5, 8-3
BUILTIN, 5-3, 23-1
CHARACTER, 6-1, 7-1, 7-3, 7-5,

14-8
CONTROLLED, 5-2
declaration of file attributes,

14-5
default, 5-3

Index-1

INDEX (CONT .)

Attributes (cont.)
factoring in DECLARE statement,

5-3
file, 14-2
file attribute merging during

OPEN, 14-6
FIXED, 6-1, 7-1 to 7-2, 7-4,

11-1
FLOAT, 5-3, 6-1, 7-2, 7-4, 9-4,

11-1
INPUT, 14-2
NONVARYING, 5-3, 6-2
OUTPUT, 14-2
PARAMETER, 5-2
PRINT, 14-2 to 14-3
RECORD, 14-2
set by DEFAULT statement, 5-5
STATIC, 5-2
storage class, 5-2
STREAM, 14-2
VARYING, 6-2
VFORM, 13-10, 14-4

Automatic line numbering
and NUMBER statement, 4-2
terminating mode, 4-2

AUTOMATIC storage class attribute
allocation in prologue, 15-5
definition, 16-2
freeing in epilogue, 15-5
other references, 5-2 to 5-3,

19-1, 26-1, 27-1, 27-3
ref in error messages, 25-3,

25-14, 25-34, 25-36, 25-53
set by DEFAULT statement, 5-5

B format item
definition, 13-6
description in summary, 32-5
other references, 27-3

B1 format item
definition, 13-6
description in summary, 32-5
other references, 27-3

B2 format item
definition, 13-7
description in summary, 32-5
other references, 27-3

B3 format item
definition, 13-7
description in summary, 32-5
other references, 27-3, 30-4

B4 format item
definition, 13-7
description in summary, 32-5
other references, 27-3
sample program, 30-4

BASED storage class attribute
ALLOCATE statement, 19-13
arguments to built-in

functions, 23-2

BASED storage class attribute (cont.)
arrays, 19-6
automatic FREE by XEQ, 4-4
BASED DO-loop variable, 19-8
BASED POINTERs, 19-12
BASED PROCEDURE arguments, 19-10
definition, 19-2
FREE statement, 19-13
list processing example, 20-1
other references, 5-2, 6-3,

7-4, 16-3, 19-1, 23-3,
23-11, 26-1, 26-3, 27-1,
27-3

ref in error messages, 25-2,
25-7, 25-10, 25-12 to
25-14, 25-17, 25-34,
25-36, 25-43, 25-47, 25-51
to 25-54

variables in BASED
declarations, 19-12

BEFORE built-in function
definition, 23-5
other references, 32-7

BEGIN statement
abnormal termination, 15-4
block invocation, 15-4
definition, 15-1
epilogue, 15-5
example in summary, 32-3
normal termination, 15-4
other references, 4-4, 5-6,

9-8, 15-3, 18-2, 27-1 to
27-2

prologue, 15-5
ref in error messages, 25-9 to

25-10, 25-19, 25-36,
25-55, 25-59, 25-62

scope of statement label, 15-3
BIT data type attribute

definition, 6-2
DO-loop variable, 9-6
other references, 5-1, 6-2,

7-3, 7-5, 8-3, 19-4, 26-1,
27-2

Blocks
abnormal termination, 15-4
definition, 15-1
epilogue, 15-5
how invoked, 15-4
normal termination, 15-4
prologue, 15-5
recursive, 15-5

BREAK statement
definition, 4-4
example in summary, 32-2
other references, 4-1
ref in error messages, 25-14,

25-58, 25-61
Breakpoints, 4-4

Index-2

Built-in functions
ABS, 23-3
ACOS, 23-3
ADDR, 19-2, 23-3
AFTER, 23-3
ALLOCATION, 23-4
ASIN, 23-4
AT AN , 23-4
ATAND, 23-4
BEFORE, 23-5
CEIL, 23-5
COLLATE, 23-5
COPY, 23-5
COS, 23-6
COSD, 23-6
COSH, 23-6
DATE, 23-2, 23-6
definition, 23-1
DIMENSION, 23-6
DIVF, 7-2, 23-7
DIVI, 7-2, 23-7
EVERY, 23-7
EXP, 23-8
FLOOR, 23-8
F'LTED, 23-8
HBOUND, 23-8
HIGH, 23-9
INDEX, 23-9
LBOUND, 23-9
LENGTH, 23-9
LOG, 23-1, 23-10
LOGI0, 23-10
LOG2, 23-10
LOW, 23-10
MAX, 23-10
MIN, 23-11
MOD, 23-11
NULL, 23-11
ONMSG, 23-11
RANDOM, 23-12
recognizing, 23-1
REVERSE, 2j-.L3
SIGN, 23-13
SIN, 23-13
SIND, 23-13
SINH, 23-13
SOME, 23-14
SQRT, 9-2, 23-14
STRING, 23-14
SUBSTR, 23-1, 23-14
summary, 32-6
TANH, 23-15
TIME, 23-15
TRANSLATE, 23-15
TRUNC, 23-16
UNSPEC, 23-16
VERIFY, 23-17
with BASED arguments, 23-2
with no arguments, 23-1

INDEX (CONT •)

BUILTIN attribute
definition, 5-3, 23-1
other references, 16-2
ref in error messages, 25-36

BY option
illegal with POINTER DO vble,

19-9
of DO statement, 9-3, 9"-6
other references, 27-1
sample program, 30-6

CALL statement
arguments, 17-2
definition, 17-6
matching arguments to

parameters, 17-7
other references, 15-4, 17-2,

17-4, 17-7, 27-1
ref in error messages, 25-5,

25-7, 25-15
with BASED arguments, 19-10

CEIL built-in function
definition, 23-5
other references, 32-6

CHARACTER data type attribute
BASED CHARACTER array, 19-6
definition, 6-1
DO-loop variable, 9-6
other references, 5-1, 6-1,

7-1, 7-3, 7-5, 14-8, 19-4,
20-2, 26-1, 27-2

sample program, 30-3, 30-5,
30-10

Character set, 2-1
Character string characters, 2-2
CHARACTER string constants,

repetition factors, 6-2
Character string, null, 6-2
CLOSE FILES statement

definition, 14-10
example in summary, 32-5
other references, 27-6
ref in error messages, 25-29

CLOSE statement
definition, 14-9
example in summary, 32-5
other references, 14-1, 26-4,

27-1
ref in error messages, 25-4,

25-23 to 25-24, 25-29,
25-31 to 25-32, 25-44

COLLATE built-in function
definition, 23-5
other references, 32-7
sample program, 30-3, 30-10

Collect statements
definition, 3-1
other references, 3-1, 32-1
placement, 3-3
replacing, 3-3

Index-3

INDEX (CONT.)

COLUMN format item
definition, 13-S
description in summary, 32-5
other references, 27-3
ref in error messages, 25-11

Comments, 2-3, 21-1, 32-1
Comparison operators

applied to POINTERs, 7-4, 19-5
applied to strings, 7-3
conversion rules, 7-3
list of, 7-3, 32-1

Compiler, definition of, 26-1
Concatenation operator, 7-5, 32-1
CONDITION condition

definition, lS-7
description in summary, 32-4
other references, 27-3

Condi tions·
ATTENTION, lS-7
CONDITION, lS-7
ENDFILE, lS-6
ERROR, lS-7
RECORD, 18-6
STRINGRANGE, lS-5
SUBSCRIPTRANGE, lS-5
UNDEFINEDFILE, lS-6
ZERODIVIDE, lS-5

Constants, 32-1
CONTINUE statement

definition, 4-4
example in summary, 32-2
other references, 4-1, 4-5
ref in error messages, 25-2 to

25-3, 25-7, 25-14, 25-53,
25-61

Continuing statements on
additional lines, 3-2, 30-7

Control format items, 13-2, 13-S,
32-5

CONTROLLED storage class
attribute

ALLOCATE statement, 19-13
automatic FREE by XEQ, 4-4
definition, 16-3
FREE statement, 19-13
other references, 5-2, 19-1,

26-1, 27-3
ref in error messages, 25-2,

25-10 to 25-11, 25-14,
25-34, 25-36, 25-53

Conversions
BIT to CHARACTER, 24-3
BIT to FIXED, 24-3
BIT to FLOAT, 24-3
CHARACTER to BIT, 24-3
CHARACTER to FIXED, 24-3
CHARACTER to FLOAT, 24-3
FIXED to BIT, 24-1
FIXED to CHARACTER, 24-1
FIXED to FLOAT, 24-1

Conversions (cont.)
FLOAT to BIT, 24-2
FLOAT to CHARACTER, 24-2
FLOAT to FIXED, 24-2
in GET stmt input, 11-1
of data, 7-1
rules for comparison

operators, 7-3
COpy built-in function

definition, 23-5
other references, 32-7
ref in error messages, 25-9
sample program, 30-6, 30-10

COS built-in function
definition, 23-6
other references, 1-2, 32-6
sample program, 30-2

COSD built-in function
definition, 23-6
other references, 1-3, 32-6

COSH built-in function
definition, 23-6
other references, 27-6, 32-6
ref in error messages, 25-21

CPL character set, 2-1

Data conversions, 7-1
Data format items, 13-2, 13-4,

32-5
uata type attributes, 5-1
Data type conversions in GET stmt

input, 11-1
Data types

BUILTIN, 5-3
CHARACTER, 6-1
FIXED, 6-1
FLOAT, 6-1
POINTER, 19-2

DATE built-in function
definition, 23-6
other references, 23-2, 32-7

DDT statement
ref in error messages, 25-16

DEBUG statement
ref in error messages, 25-39

Declarations
default, 15-2
explicit, 15-2

DECLARE statement
attribute factoring, 5-3
definition, 5-1
example in summary, 32-2
factoring of attributes, 5-3
for parameters, 17-S
multiple declarations, 5-3
other references, 2-3, 5-5 to

5-6, 6-1 to 6-2, 14-6,
15-2, 16-1, 18-3, 19-2,
19-12, 20-1, 20-5, 26-3,
27-1, 27-5

Index-4

INDEX (CO~T •)

DECLARE statement (cont.)
overriding DEFAULT statement

attributes, 5-6
ref in error messages, 25-1,

25-3, 25-6, 25-9 to 25-10,
25-12 to 25-13, 25-16,
25-34, 25-36, 25-42 to
25-45, 25-53 to 25-54,
25-59, 25-63

sample program, 30-7
scope rules with blocks, 15-2
the file declaration, 14-5

DECsystem-lO
logging off, 28-3
logging on, 28-1

DECsystem-20
logging off, 29-2
logging on, 29-1

Default and explicit
declarations, 15-2

Default attributes, 5-3
Default specification of DEFAULT

statement, 5-5
DEFAULT statement

conflicting DEFAULT statements,
5-5

default DEFAULT statement, 5-5
default specification, 5-5
defaults for parameters, 17-7
definition, 5-4
example in summary, 32-2
I-N rule, 5-5, 27-5, 32-2
other references, 6-1, 15-2,

15-5, 16-1, 17-6, 18-3,
27-1, 27-5

overriding with DECLARE
statement, 5-6

range specification, 5-4
ref in error messages, 25-16,

25-43, 25-55
setting attributes, 5-5
used with PROCEDURE names, 17-6

Default storage classes, 16-1
DEFINE TOPS-20 monitor command

ref in error messages, 25-28
DELAY statement

definition, 21-1
example in summary, 32-3
other references, 27-6
ref in error messages, 25-42,

25-61
DIMENSION attribute, 5-2
DIMENSION built-in function

definition, 23-6
other references, 32-7
ref in error messages, 25-9,

25-11, 25-61
Dimensioned variables, 10-1
Direct statements

definition, 3-1
other references, 32-1

DIVF built-in function
definition, 23-7
other references, 7-2, 26-4,

27-6, 32-6
ref in error messages, 25-39

DIVI built-in function
definition, 23-7
other references, 7-2, 26-4,

27-6, 32-6
ref in error messages, 25-39

Division of FIXED values, 7-2,
25-39, 26-4

Division operator, 7-2
DO statement

abnormal termination, 9-3, 9-7
BASED DO-loop variable, 19-8
BY clause, 9-3, 9-6
completely unsatisfied

specifications, 9-4
definition of DO-group, 9-1
DO specification defined, 9-2
DO variable defined, 9-2
example in summary, 32-3
expression evaluation in

clauses, 9-6
GOTO-less and structured

programming, 22-1
multiple specifications, 9-5
negative by-expression, 9-3
non-iterative, 9-1
normal termination, 9-3, 9-7
other references, 1-6, 8-1,

8-3, 15-4, 18-3, 19-5,
20-4, 26-1, 27-1 to 27-2

POINTER DO variable, 19-9
ref in error messages, 25-2 to

25-3, 25-9 to 25-10,
25-13, 25-17 to 25-19, 25-43,

25-62
REPEAT clause, 9-3, 9-6
sample program, 30-1, 30-6
THEN/ELSE clause in IF stmt, 8-3
TO clause, 9-3, 9-6
WHILE clause, 9-1, 9-3, 9-5, 9-7
WHILE only, 9-1
with non-arithmetic variable,

9-6

E format item
definition, 13-2, 13-5
description in summary, 32-5
other references, 27-3, 30-6
ref in error messages, 25-22,

25-47, 25-49, 25-55
EDIT option

other references, 27-1 to 27-3
sample program, 30-2, 30-10

EDIT option of PUT statement, 14-8
Editing a program, 4-3

Index-5

INDEX (CONT.)

ELSE clause
omitting in IF statement, 8-2
other references, 27-2
separating from IF statement,

8-2
END statement

definition, 9-7
GO TO to multiple closure END,

9-8
of a PROCEDURE, 17-7
other references, 1-6, 8-3,

9-1, 17-7, 18-2 to 18-3,
27-1

ref in error messages, 25-2,
25-4 to 25-6, 25-9, 25-19,
25-49, 25-62

ENDFILE condition
definition, 18-6
description in summary, 32-4
example in summary, 32-3
other references, 18-2, 18-8,

27-3
sample program, 30-7

ENVIRONMENT file attribute
definition, 14-3
other references, 27-2 to 27-3,

27-5
Epilogue

release of AUTOMATIC storage,
15-5

ERASE statement
definition, 4-2
example in summary, 32-2
other references, 1-5, 4-1, 4-5
ref in error messages, 25-7,

25-10, 25-46, 25-55
ERROR condition

definition, 18-7
description in summary, 32-4
example in summary, 32-3
other references, 18-1, 27-3,

30-4
EVERY built-in function

definition, 23-7
other references, 32-7

EXECUTE statement
definition, 4-3
example in summary, 32-2
initialization functions, 4-4
other references, 4-1, 26-4,

30-9
ref in error messages, 25-2

Executing a program, 4-3
Execution, sequence of, 8-1
EXP built-in function

definition, 23-8
other references, 32-6
ref in error messages, 25-21

Explicit and default
declarations, 15-2

Exponent in FLOAT constants, 6-1

Exponentiation operator, 7-2
Expressions in CPL, 7-1
Expressions, logical, 8-1, 8-3,

9-1
Extent expressions

definition of extent
expressions, 16-2

variables in AUTOMATIC
declarations, 16-2

variables in BASED
declarations, 19-12

variables in CONTROLLED
declarations, 16-5

F format item
definition, 13-2, 13-4
description in summary, 32-5
other references, 27-3
ref in error messages, 25-22,

25-47, 25-49
sample program, 30-2

Factoring of attributes in
DECLARE statement, 5-3

Fibonacci numbers, 10-1
FILE attribute

NAMED CONSTANT storage class,
16-4

other references, 16-2, 16-4,
27-2

File attributes
declared, 5-3, 14-5
in OPEN statement, 14-5
INPUT, 14-2
listed, 14-2
merging during OPEN, 14-6
OUTPUT, 14-2
PRINT, 14-2 to 14-3
RECORD, 14-2
STREAM, 14-2
VFORM, 14-4

FILE option
GET statement, 14-1, 14-7
OPEN statement, 14-5
other references, 13-10, 14-6,

27-1 to 27-2, 28-3, 29-3
PUT statement, 14-1, 14-8
READ statement, 14-9
WRITE statement, 14-9

FIXED data type attribute
definition, 6-1
division illegal, 7-2, 26-4
other references, 5-1, 6-1, 7-1

to 7-2, 7-4, 9-6, 11-1,
26-1, 27-1 to 27-2, 27-5

set by DEFAULT statement, 5-5
FLOAT data type attribute

definition, 6-1
other references, 5-1, 5-3,

6-1, 7-2, 7-4, 9-4, 9-6,
11-1, 26-1, 27-1 to 27-2,
27-4

Index-6

INDEX (CONT •)

FLOAT data type attribute (cont.)
set by DEFAULT statement, 5-5

FLOOR built-in function
definition, 23-8
other references, 32-6

FLTED built-in function
definition, 23-8
other references, 27-6, 32-7
ref in error messages, 25-35

Format items
A, 13-2, 13-6
B, 13-6
B1, 13-6
B2, 13-7
B3, 13-7
B4, 13-7
COLUMN, 13-8
control, 13-2, 13-8
data, 13-2, 13-4
E, 13-2, 13-5
F, 13-2, 13-4
hexadecimal output, 13-7
octal output, 13-7
PAGE, 13-2, 13-9
R, 13-9
SKIP, 13-2, 13-9
X, 13-2, 13-8

FORMAT statement
definition, 13-9
other references, 13-9, 18-3,

27-1, 32-5
ref in error messages, 25-14,

25-34, 25-55
FREE statement

definition for BASED, 19-13
definition for CONTROLLED,

16-4, 19-14
example in summary, 32-3
other references, 19-1, 19-14,

27-1
ref in error messages~ 25-2,

25-10, 25-17, 25-36, 25-53
to 25-54

FROM option
of CONTINUE statement, 4-4
of WRITE statement, 14-9
of XEQ statement, 4-4
other references, 19-12
ref in error messages, 25-3,

25-7, 25-14, 25-34 to
25-35, 25-40

Function procedures, 17-4

GET statement
data type conversions with

input, 11-1
default FILE(SYSIN), 14-2
definition, 14-7
example in summary, 32-4
FILE option, 14-1, 14-7

GET statement (cont.)
FILE(SYSIN) default, 14-7
implicit file open, 14-7
LIST option, 14-7
omitted data values in input

stream, 11-2
other references, 2-3, 18-1,

18-8, 27-1
raising ENDFILE condltoin, 18-6
raising UNDEFINEDFILE

condition, 18-6
ref in error messages, 25-1,

25-4, 25-6, 25-15, 25-19
to 25-20, 25-23 to 25-24,
25-27 to 25-28, 25-34 to
25-35, 25-44, 25-47, 25-59

sample program, 30-4
SKIP option, 14-7
STRING option, 12-1, 14-7
to terminal, 11-1

GO TO statement
abnormal termination of blocks,

15-4
definition, 8-1
example in summary, 32-3
GOTO-1ess and structured

programming, 22-1
other references, 1-5, 9-8,

15-4, 18-2, 21-1, 27-2
out of ON-unit, 18-4
ref in error messages, 25-5,

25-10, 25-35, 25-43, 25-49
to multiple closure END, 9-8

GOTO-1ess and structured
programming

sample program, 30-1

HBOUND built-in function
definition, 23-8
other references, 32-7
ref in error messages, 25-9,

25-11 to 25-12
Hexadecimal adding machine sample

program, 30-4
Hexadecimal bit strings, 6-2
Hexadecimal output (B4 format

item), 13-7
HIGH built-in function

definition, 23-9
other references, 32-7
ref in error messages, 25-42

I through N rule with DEFAULT
statement, 5-5, 27-5, 32-2

I-N rule with DEFAULT statement,
5-5, 27-5, 32-2

Identifiers, 2-2, 32-1
IF statement

BIT expression, 8-3
definition, 8-1

Index-7

INDEX (CONT.)

IF statement (cont.)
DO group as THEN/ELSE clause,

8-3
example in summary, 32-3
GOTO-1ess and structured

programming, 22-1
nesting IF statements, 8-2
omitting ELSE clause, 8-2
other references, 1-6, 8-3,

9-1, 18-3, 19-5, 21-1,
26-1, 27-2

ref in error messages, 25-5 to
25-6, 25-10, 25-15, 25-40,
25-55

sample program, 30-1
separating the ELSE clause, 8-2

IGNORE option
of READ statement, 14-9
other references, 27-2
ref in error messages, 25-37

Implicit file opening, 14-7
INDEX built-in function

definition, 23-9
other references, 32-7
sample program, 30-3

Initialization functions used
with EXECUTE statement, 4-4

INPUT file attribute
definition, 14-2
other references, 27-3

Interpreter, definition of, 26-1
INTO option

of READ statement, 14-9
other references, 19-12, 27-2

Iteration factors in format
items, 13-3 to 13-4

Keywords, 2-2 to 2-3

Labels, statement
as explicit declarations, 15-2
definition, 8-1
example in summary, 32-3
on PROC and BEGIN statements,

15-3
other references, 15-2
used with GOTO statement, 8-1

LBOUND built-in function
definition, 23-9
other references, 32-7
ref in error messages, 25-9,

25-11 to 25-12, 25-61
LENGTH built-in function

definition, 23-9
other references, 32-7
sample program, 30-3

Line numbers
automatic generation, 4-2
definition, 3-1
other references, 3-1 to 3-2,

4-1, 32-1

LIST option
of GET statement, 14-7
of PUT statement, 14-8
other references, 27-2

List processing, description and
example, 20-1

LIST statement
definition, 4-1
description of listing format,

26-4
example in summary, 32-2
other references, 1-4, 4-1 to

4-2, 30-9
ref in error messages, 25-7,

25-55
LOAD statement

definition, 4-3
example in summary, 32-2
NUMBER option, 4-3
other references, 4-1, 4-3,

26-4, 28-3, 29-3
ref in error messages, 25-10,

25-13, 25-16 to 25-18,
25-24 to 25-30, 25-41,
25-44, 25-46, 25-48 to
25-49, 25-58, 25-61

Loading a program from disk, 4-3
LOG built-in function

definition, 23-10
other references, 1-3, 23-1,

32-6
ref in error messages, 25-21

LOG10 built-in function
definition, 23-10
other references, 1-3, 32-6
ref in error messages, 25-21

LOG2 built-in function
definition, 23-10
other references, 32-6
ref in error messages, 25-21

Logging off
the DECsystem-10, 28-3
the DECsystem-20, 29-2

Logging on
the DECsystem-10, 28-1
the DECsystem-20, 29-1

Logical expressions, 8-1, 8-3, 9-1
Logical operators, 32-1
LOW built-in function

definition, 23-10
other references, 32-7
ref in error messages, 25-42

Matrices, 10-2
MAX built-in function

definition, 23-10
other references, 32-6
ref in error messages, 25-35

Merging file attributes during
OPEN, 14-6

Index-8

INDEX (CONT .)

MIN built-in function
definition, 23-11
other references, 32-6
ref in error messages, 25-35

MeD built-in function
definition, 23-11
other references, 32-6
sample program, 30-1

Modularity
by means of PROCEDURE

statement, 17-1
with structured programming,

22-3
MONITOR statement

definition, 4-5
example in summary, 32-2
other references, 4-1, 28-2
ref in error messages, 25-26,

25-31
Multiple declarations in DECLARE

statement, 5-3
Multiple specifications in DO

statement, 9-5
Multiple statement labels, 8-1
~ultiple statements per line, 3-1
Multiplication operator, 7-2

NAMED CONSTANT storage class
definition, 16-4

NOBREAK statement
definition, 4-5
example in summary, 32-2
other references, 4-1
ref in error messages, 25-58,

25-61
NONVARYING data type attribute

other references, 5-3, 6-2
NOPAGE file attribute

definition, 14-4
other references, 14-3

Normal termination
of BEGIN/END blocks, 15-4, 18-4
of DO/END groups, 9-3, 9-7
of ON-units, 15-4, 18-4
of PROCEDURE/END blocks, 15-4

Not logical operator, 7-4
NULL built-in function

definition, 19-7, 23-11
other references, 32-7
ref in error messages, 25-53

Null character string, 6-2
Null statement

definition, 21-1
other references, 27-2

Null string, 6-2
NUMBER option

definition, 4-3
other references, 26-4
ref in error messages, 25-58

NUMBER statement
definition, 4-2
example in summary, 32-2
other references, 4-1, 4-3, 26-4
ref in error messages, 25-13,

25-46
Numeric chars, defineq, 2-1

Octal bit strings, 6-2
Octal output (B3 format item),

13-7
ON statement

definition, 18-3
example in summary, 32-3
other references, 15-4, 18-1,

18-9, 26-1, 27-2 to 27-3,
27-6, 30-4

ref in error messages, 25-9 to
25-10, 25-13, 25-15, 25-25
to 25-33

RETURN from ON-unit illegal,
17-7

sample program, 30-7
SNAP option, 18-3
SYSTEM option, 18-3
with structured programming,

22-3
ON-conditions

ATTENTION, 18-7
CONDITION, 18-7
ENDFILE, 18-6
ERROR, 18-7
RECORD, 18-6
STRINGRANGE, 18-5
SUBSCRIPTRANGE, 18-5
UNDEFINEDFILE, 18-6
ZERODIVIDE, 18-5

ON-units
definition, 18-1
example in summary, 32-3
how invoked, 15-4
invocation, 15-4
normal termination an error,

18-4
other references, 18-9
ref in error messages, 25-5,

25-9 to 25-10, 25-16,
25-36, 25-49

scope, 18-8
ONMSG built-in function

definitlon, 23-11
other references, 18-4, 27-6,

32-7
OPEN statement

definition, 14-5
effect when file already open,

14-6
example in summary, 32-4
FILE option, 14-5

Index-9

INDEX (CONT.)

OPEN statement (cont.)
implicit open if no OPEN stmt,

14-7
merging of file attributes, 14-6
other references, 26-4, 27-2,

28-3, 29-3
raising UNDEFINEDFILE

condition, 18-6
ref in error messages, 25-1,

25-4, 25-16 to 25-18,
25-23 to 25-30, 25-41,
25-44, 25-48 to 25-49,
25-56, 25-61

sample program, 30-7
TITLE option, 14-1, 14-5, 14-7
with file attributes, 14-5

Operators
addition, 7-2
and, 7-4
comparison, 7-3, 32-1
concatenation, 7-5, 32-1
division, 7-2
exponentiation, 7-2
in CPL expressions, 7-1
logical, 32-1
multiplication, 7-2
not, 7-4
or, 7-4
precedence of, 7-5
prefix minus, 7-4
prefix plus, 7-4
priority of, 7-5
subtraction, 7-2
two-character, 2-2

Or logical operator, 7-4
OUTPUT file attribute

definition, 14-2
other references, 14-4, 27-3

PAGE format item
definition, 13-2, 13-9
description in summary, 32-5
other references, 27-3

PAGE option
definition, 14-3, 14-8
other references, 27-2
ref in error messages, 25-5

PARAMETER storage class attribute
definition, 16-3
other references, 5-2, 17-8,

20-4, 27-3
ref in error messages, 25-3,

25-36
Parameters

as explicit declarations, 15-2
data attributes, 17-7
data type, 17-3
introduction, 17-2
matching with arguments, 17-7
POINTER data type, 19-10

Parentheses, used to modify
priority, 7-5

Point of invocation, definition,
17-6

POINTER data type attribute
BASED POINTERs, 19-12
comparison of POINTER values,

7-4, 19-5
definition, 19-2
dimensioned POINTERs, 19-12
DO-loop variable, 9-6
in PROCEDURE RETURNS, 19-11
list processing example, 20-1
other references, 4-4, 5-2,

6-3, 7-4, 19-1, 23-3,
23-11, 23-17, 26-1, 27-2

POINTER DO variable, 19-9
ref in error messages, 25-6 to

25-7, 25-13, 25-17 to
25-18, 25-36, 25-41,
25-43, 25-47, 25-51 to
25-54

used as PROCEDURE arguments,
19-10

used with BASED DO variable,
19-8

used with PROCEDURE arguments,
19-10

Polish notation, 26-2
Precedence of operators, 7-5
Prefix minus operator, 7-4
Prefix plus operator, 7-4
Prime numbers

sample program, 30-1
PRINT file attribute

definition, 14-2 to 14-3
other references, 14-4, 27-2 to

27-3
ref in error messages, 25-5 to

25-6
Printing over fold in printer

paper, 14-4
Priority of operators, 7-5
PROCEDURE statement

abnormal termination, 15-4
blocks, 15-1
default RETURNS option, 17-6
definition, 17-5
function procedures, 17-4
introductory discussion, 17-1
invocation with POINTER

arguments, 19-10
invoked with BASED arguments,

19-10
matching arguments to

parameters, 17-7
normal termination, 15-4
other references, 4-4, 5-3,

5-6, 8-1, 9-8, 15-1 to
15-5, 16-3, 18-3, 20-3,
26-1, 27-1 to 27-2

Index-10

INDEX (CONT.)

PROCEDURE statement (cont.)
PARAMETER storage class, 16-3
parameters, 17-2
point of invocation, 17-6
PROC block invocation, 15-4
prologue, 15-5
recursive, 17-10
ref in error messages, 25-2,

25-5, 25-7, 25-9, 25-11,
25-14 to 25-17, 25-19,
25-36, 25-42, 25-50, 25~54
to 25-56, 25-60, 25-62

sample program, 30-5
scope of statement label, 15-3
with RETURNS (POINTER) , 19-11

Processing, list, description and
example, 20-1

Program blocks, definition, 15-1
Prologue

allocation of AUTOMATIC
storage, 15-5

Pseudo-variables
and BUILTIN attribute, 5-3
definition, 23-2
RANDOM, 23-12
STRING, 23-14
SUBSTR, 23-2, 23-15
UNSPEC, 23-17
with BASED arguments, 19-12,

23-2
PUT EDIT statement, 13-1
PUT statement

? abbreviation, 11-1
default FILE (SYSPRINT) , 14-2
definition, 14-7
EDIT option, 13-1, 14-8
example in summary, 32-4
FILE option, 14-1, 14-8
FILE (SYSPRINT) default, 14-8
FLTED built-in function, 23-8
format-list description, 13-1
implicit file open, 14-7
LIST option, 14-8
other references, 1-1, 1-4,

2-3, 9-2, 18-2, 27-1 to
27-3, 27-5

PAGE option, 14-3, 14-8
raising UNDEFINEDFILE

condition, 18-6
ref in error messages, 25-1,

25-3 to 25-6, 25-14,
25-23, 25-25, 25-28, 25-38,

25-44, 25-47, 25-50,
25-55, 25-59

sample program, 30-1 to 30-2,
30-10

SKIP option, 11-1, 14-1, 14-8
SKIP(O) option, 14-8
STRING option, 12-1, 14-8

PUT statement (cont.)
to terminal, 11-1
variable format for PUT LIST,

11-2

R format item
definition, 13-9
description in summary, 32-5
other references, 27-3
ref in error messages, 25-14,

25-55
RANDOM built-in function

definition, 23-12
other references, 27-6, 32-6

RAN DOl-1 pseudo-var iable
definition, 23-12
other references, 32-7

RANGE option
of DEFAULT statement, 5-4
other references, 27-1, 27-5
ref in error messages, 25-16,

25-43
READ statement

definition, 14-8
example in summary, 32-4
FILE option, 14-9
IGNORE option, 14-9
implicit file open, 14-7
INTO option, 14-9
other references, 18-8, 27-2,

32-4
raising ENDFILE condition, 18-6
raising RECORD condition, 18-6
raising UNDEFINEDFILE

condition, 18-6
ref in error messages, 25-1,

25-4, 25-7 to 25-8, 25-19,
25-24, 25-27 to 25-28,
25-34 to 25-35, 25-37,
25-40, 25-44

sample program, 30-3, 30-7
RECORD condition

definition, 18-6
description in summary, 32-4
ref in error messages, 25-8

RECORD file attribute
definition, 14-2

Record processing with BASED
storage, 20-1

Recursive blocks, 15-5
Recursive procedures, 17-10
REPEAT option

of DO statement, 9-3, 9-6
other references, 20-4, 27-1
with POINTER DO variable, 19-9

Repetition factors
bit string constants, 6-3
char string constants, 6-2
example in summary, 32-1

Index-II

INDEX (CONT •)

Replacing collect statements, 3-3
Reserved words, 2-2
RETURN statement

definition, 17-7
other references, 15-4, 18-3,

27-2
ref in error messages, 25-5,

25-60
RETURNS option

other references, 27-2
sample program, 30-5

REVERSE built-in function
definition, 23-13
other references, 32-7

Reverse Polish notation, 26-2
REVERT statement

definition, 18-9
example in summary, 32-3
other references, 18-8, 27-2

Sample program
a list processing example, 20-1
format CPL programs, 30-7
hexadecimal adding machine, 30-4
make a "concordance of

letters", 30-3
prints its own source, 30-9
table of sines and cosines, 30-2
type prime numbers, 30-1
VFORM file attribute, 30-5

SAVE statement
definition, 4-2
example in summary, 32-2
other references, 4-1, 4-3,

26-4, 28-3, 29-3
ref in error messages, 25-16 to

25-18, 25-24 to 25-30,
25-41, 25-44, 25-48 to
25-49, 25-61

Saving programs on disk, 4-2
Scope rules for declarations, 15-2
Semicolon, terminating a

statement, 3-1
Sequence of execution, 8-1
SEQUENTIAL file attribute

other references, 27-3
SET option

other references, 20-3
ref in error messages, 25-6,

25-43, 25-47, 25-52
SIGN built-in function

definition, 23-13
other references, 32-6

SIGNAL statement
definition, 18-8
example in summary, 32-3
other references, 18-7, 27-2,

32-4
ref in error messages, 25-11,

25-16, 25-59

SIN built-in function
definition, 23-13
other references, 1-2, 32-6
sample program, 30-2

SIND built-in function
definition, 23-13
other references, 1-3, 32-6

SINH built-in function
definition, 23-13
other references, 27-6, 32-6
ref in error messages, 25-21

SKIP format item
definition, 13-2, 13-9
description in summary, 32-5
other references, 27-3
ref in error messages, 25-47

SKIP option
GET statement, 14-7
other references, 13-10, 27-2
PUT statement, 11-1, 14-1, 14-8
ref in error messages, 25-6,

25-47
sample program, 30-1
SKIP(O) with PUT statement, 14-8

SNAP option
of ON statement, 18-3
other references, 27-2

SNAP statement
definition, 15-5
format of snap dump, 15-5
other references, 17-11, 18-3,

27-6
ref in error messages, 25-7

SOME built-in function
definition, 23-14
other references, 32-7

Special characters, used in CPL,
2-1

SQRT built-in function
definition, 23-14
other references, 1-2, 9-2, 32-6
ref in error messages, 25-20

Starting execution of a program,
4-3

Statement label
NAMED CONSTANT, 16-4

Statement labels, 8-1, 32-3
Statement numbers

definition, 3-2
Statements

?, 11-1
ALLOCATE, 16-4
assignment, 7-1
BEGIN, 15-1
BREAK, 4-4
CALL, 17-6
CLOSE, 14-9
CLOSE FILES, 14-10, 32-5
CONTINUE, 4-4
DECLARE, 5-1

Index-12

INDEX (CONT •)

Statements (cent.)
DEFAULT, 5-4
DELAY, 21-1
END, 9-7
ERASE, 4-2
EXECUTE, 4-3
FORMAT, 13-9
FREE, 16-4
GET, 11-1, 14-7
GOTO, 8-1
IF, 8-1
LIST, 4-1
LOAD, 4-3
MONITOR, 4-5
NOBREAK, 4-5
null, 21-1
NUMBER, 4-2
ON, 18-3
OPEN, 14-5
PROCEDURE, 8-1, 17-5
PUT, 14-7
READ, 14-8
RETURN, 17-7
REVERT, 18-9
SAVE, 4-2
SIGNAL, 18-8
SNAP, 15-5
STOP, 21-1
WEAVE, 4-3
WRITE, 14-9
XEQ, 4-3

STATIC storage class attribute
definition, 16-3
other references, 5-2, 19-1,

26-1, 27-1, 27-3
ref in error messages, 25-3,

25-42, 25-63
set by DEFAULT statement, 5-5

STOP statement
definition, 21-1
example in summary, 32-3
other references, 27-2
ref in error messages, 25-5,

25-63
Storage class attributes

AUTOMATIC, 16-2
CONTROLLED, 16-3
default rules, 16-1
description, 5-2
general discussion, 16-1
NAMED CONSTANT, 16-4
PARAMETER, 16-3
STATIC, 16-3

Storage classes
BASED, 19-2

STORAGE RESET message, 4-3
STREAM file attribute

definition, 14-2
other references, 27-3

STRING built-in function
definition, 23-14
other references, 32-7
ref in error messages, 25-11,

25-61
STRING option

GET statement, 12-1,.14-7
other references, 13-10, 19-12,

27-1 to 27-2
PUT statement, 12-1, 14-8
ref in error messages, 25-3,

25-6, 25-20, 25-50, 25-59
sample program, 30-4

STRING pseudo-variable
definition, 23-14
other references, 19-4 to 19-5,

32-7
ref in error messages, 25-11

STRINGRANGE condition
definition, 18-5
description in summary, 32-4
other references, 27-3
ref in error messages, 25-8

Structured and GOTO-less
programming, 22-1

SUBSCRIPTRANGE condition
definition, 18-5
description in summary, 32-4
other references, 27-3
ref in error messages, 25-12

SUBSTR built-in function
definition, 23-14
other references, 18-5, 23-1,

32-7
ref in error messages, 25-8,

25-60
sample program, 30-3, 30-5,

30-10
SUBSTR pseudo-variable

definition, 23-15
other references, 18-5, 23-2,

32-7
ref in error messages, 25-2,

25-11, 25-34
Subtraction operator, 7-2
SYSIN

default GET FILE option, 2-3,
5-3, 14-2

effect on default
file-specification, 14-6

effect on file-specification,
28-3, 29-3

SYSPRINT
default PUT FILE option, 2-3,

5-3, 14-2
defaults to PRINT attribute,

14-3
effect on default

file-specification, 14-6

Index-13

INDEX (CaNT.)

SYSPRINT (cant.)
effect on file-specification,

28-3, 29-3
other references, 27-5

SYSTEM option
definition, 18-3
example in summary, 32-3
other references, 18-2, 18-9,

27-2
ref in error messages, 25-9,

25-15

TANH built-in function
definition, 23-15
other references, 32-6

Terminating a statement with a
semicolon, 3-1

THEN clause
other references, 27-2

THRU clause, 4-1
TIME built-in function

definition, 23-15
other references, 17-5, 32-7

TITLE option
of OPEN statement, 14-1, 14-5,

14-7
other references, 27-2, 28-3,

29-3
ref in error messages, 25-16 to

25-18, 25-24 to 25-30,
25-41, 25-44, 25-48 to
25-49, 25-56, 25-61

TO option
illegal with POINTER DO vble,

19-9
of DO statement, 9-3, 9-6
other references, 27-1

TRANSLATE built-in function
d~finition, 23-15
other references, 32-7
sample program, 30-10

TRUNC built-in function
definition, 23-16
other references, 32-6

Truncation, 6-1, 7-2
Two-character operators, 2-2

UNDEFINEDFILE condition
definition, 18-6
description in summary, 32-4
other references, 27-3
ref in error messages, 25-2,

25-L5 to 25-16, 25-18 to
25-19, 25-21, 25-23 to
25-33, 25-37, 25-41,
25-44, 25-48 to 25-49,
25-56, 25-62 to 25-63

sample program, 30-7

UNSPEC built-in function
definition, 23-16
other references, 32-7
ref in error messages, 25-11,

25-61
sample program, 30-4 to 30-5

UNSPEC pseudo-variable
definition, 23-17
other references, 19-12, 19-14,

32-7
ref in error messages, 25-11
sample program, 30-3 to 30-5

variable extent expressions, 16-2
Variable format for PUT LIST, 11-2
Variable names, 2-2
VARYING data type attribute

other references, 6-2
Vectors, 10-1
VERIFY built-in function

definition, 23-17
other references, 32-7

VFORM file attribute
definition, 14-4
other references, 14-3, 27-4 to

27-5
output definition, 13-10
sample program, 30-5

WEAVE statement
definition, 4-3
example in summary, 32-2
other references, 4-1, 26-4,

28-3, 29-3
ref in error messages, 25-13,

25-16 to 25-18, 25-24 to
25-30, 25-41, 25-44,
25-46, 25-48 to 25-49,
25-58, 25-61

WHILE option
of DO statement, 9-3, 9-5, 9-7
other references, 27-1
with POINTER DO vble, 19-9

WRITE statement
definition, 14-9
example in summary, 32-5
FILE option, 14-9
FROM option, 14-9
implicit file open, 14-7
other references, 27-2
raising UNDEFINEDFILE

condition, 18-6
ref in error messages, 25-1,

25-23 to 25-25, 25-28,
25-34 to 25-35, 25-40, 25-44

sample program, 30-7

Index-14

INDEX (CONT •)

X format item
definition, 13-2, 13-8
description in summary, 32-5

XEQ statement
definition, 4-3
example in summary, 32-2
FROM option, 4-4
initialization functions, 4-4
other references, 1-4, 4-1, 30-9
ref in error messages, 25-2 to

25-3, 25-7, 25-9, 25-53,
25-58, 25-61

ZERODIVIDE condition
definition, 18-5
description in summary, 32-4
other references, 27-3
ref in error messages, 25-8

Index-IS

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02-01
	02-02
	02-03
	02-04
	03-01
	03-02
	03-03
	03-04
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	06-01
	06-02
	06-03
	06-04
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	08-01
	08-02
	08-03
	08-04
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	10-01
	10-02
	10-03
	10-04
	11-01
	11-02
	12-01
	12-02
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	17-11
	17-12
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	18-08
	18-09
	18-10
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	19-09
	19-10
	19-11
	19-12
	19-13
	19-14
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	21-01
	21-02
	22-01
	22-02
	22-03
	22-04
	23-01
	23-02
	23-03
	23-04
	23-05
	23-06
	23-07
	23-08
	23-09
	23-10
	23-11
	23-12
	23-13
	23-14
	23-15
	23-16
	23-17
	23-18
	24-01
	24-02
	24-03
	24-04
	25-01
	25-02
	25-03
	25-04
	25-05
	25-06
	25-07
	25-08
	25-09
	25-10
	25-11
	25-12
	25-13
	25-14
	25-15
	25-16
	25-17
	25-18
	25-19
	25-20
	25-21
	25-22
	25-23
	25-24
	25-25
	25-26
	25-27
	25-28
	25-29
	25-30
	25-31
	25-32
	25-33
	25-34
	25-35
	25-36
	25-37
	25-38
	25-39
	25-40
	25-41
	25-42
	25-43
	25-44
	25-45
	25-46
	25-47
	25-48
	25-49
	25-50
	25-51
	25-52
	25-53
	25-54
	25-55
	25-56
	25-57
	25-58
	25-59
	25-60
	25-61
	25-62
	25-63
	25-64
	26-01
	26-02
	26-03
	26-04
	26-05
	26-06
	27-01
	27-02
	27-03
	27-04
	27-05
	27-06
	28-01
	28-02
	28-03
	28-04
	29-01
	29-02
	29-03
	29-04
	30-01
	30-02
	30-03
	30-04
	30-05
	30-06
	30-07
	30-08
	30-09
	30-10
	31-01
	31-02
	32-01
	32-02
	32-03
	32-04
	32-05
	32-06
	32-07
	32-08
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	index-07
	index-08
	index-09
	index-10
	index-11
	index-12
	index-13
	index-14
	index-15
	index-16

