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Abstract—Appropriately handling noise and outliers is an
important issue in data mining. In this paper we examine
how noise and outliers are handled by learning algorithms.
We introduce a filtering method called PRISM that identifies
and removes instances that should be misclassified. We refer
to the set of removed instances as ISMs (instances that should
be misclassified). We examine PRISM and compare it against
3 existing outlier detection methods and 1 noise reduction
technique on 48 data sets using 9 learning algorithms. Using
PRISM, the classification accuracy increases from 78.5% to
79.8% on a set of 53 data sets and is statistically significant.
In addition, the accuracy on the non-outlier instances increases
from 82.8% to 84.7%. PRISM achieves a higher classification
accuracy than the outlier detection methods and compares
favorably with the noise reduction method.

I. INTRODUCTION

IT is common that noise and outliers exist in real world

data sets due to errors such as typographical errors or

measurement errors. When the data is modeled using ma-

chine learning algorithms, the presence of noise and outliers

can affect the model that is generated. Improving how

learning algorithms handle noise and outliers can produce

better models.

Handling noise and outliers has been addressed in a num-

ber of different ways, beginning with preventing overfit. A

common approach to prevent overfit is adhering to Occam’s

razor which states that the simplest hypothesis that fits the

data tends to be the best one. Using Occam’s razor, a trade-

off is made between accuracy on the training set and the

complexity of the model, preferring a simpler model that

will not overfit the training set. Another technique to prevent

overfit is to use a validation set during training to ensure that

noise and outliers are not learned. Some learning algorithms

have a built in method to remove suspected outliers, such as

C4.5 which prunes leaves that are thought to be insignificant

[16].

Other approaches explicitly address noise and outliers

by trying to identify them. One difficulty, however, is that

there is no agreed upon definition of what constitutes an

outlier or how to distinguish noise from an exception. Outlier

detection aims a finding anomalies in the data and has

been done using a variety of approaches such as statistical

methods [11], rule creation [10], and clustering techniques

[3]. Noise reduction methods attempt to identify and remove

mislabeled instances such as repeated edited nearest neighbor

that removes any instance that is misclassified by a 3-nearest
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neighbor classifier [24] or removing instances misclassified

by a voting ensemble [4].

In this paper, rather than attempting to identify anomalies

or mislabeled instances, we identify instances that should

be misclassified and examine how they affect classification

accuracy. We introduce PRISM (PReprocessing Instances

that Should be Misclassified), a novel filtering method that re-

moves instances that should be misclassified using heuristics

that predict how likely it is that an instance will be misclas-

sified [21]. By “instances that should be misclassified,” we

mean that in the absence of additional information other than

what the data set provides, the label assigned by the learning

algorithm to the instance is the most appropriate one, even

if it happens to be different from the instance’s target value.

We call the instances that are removed Instances that

Should be Misclassified or ISMs to distinguish them from

traditional outliers and class noise. ISMs exhibit a high

degree of class overlap where class overlap refers to how

similar an instance is to other instances of different classes

in an area of the task space. This idea is portrayed in Figure

1 that shows a hypothetical 2-dimensional dataset with three

outliers (instances with striped fill). In this paper, outlier

instances 2 and 3 are removed by PRISM since they should

be misclassified. Traditional outlier approaches would deem

instances 1 and 3 as outliers but would not consider instance

2 as an outlier since class is not taken into account. Noise

reduction techniques may not remove instance 3 since it is

sufficiently different from the square instances.

We also classify each instance as a ISM, border point, or

other based on a set of heuristics that predict how likely

an instance is to be misclassified [21]. The presence of

noise and outliers affects the classification border, effectively

pulling the classification border as the the learning algorithm

optimizes the squared error, or some other objective function.

Removing the noise and outliers during training allows the

learning algorithm to learn a more accurate classification

boundary. This idea is also portrayed in Figure 1. The

instances with a solid fill represent border points. The solid

line represents the true classification border and the dashed

line represents the classification from a learning algorithm

that is affected by the outlier.

Removing the ISMs prior to training increases the overall

average accuracy from 78.5% to 79.8%. In addition, the

accuracy for instances that are not ISMs increases from

82.8% to 84.7% while the accuracy on ISMs decreases. In

this manner, the learning algorithm models the data more

precisely. Removing the ISMs during training improves the

classification accuracy on the border points from 69.0% to



Fig. 1. A hypothetical 2-dimensional data set with that illustrates how
outliers (circles with striped fill) affect the model generated by a learning
algorithm. The solid line represents the true classification border and the
dashed line represents the classification from a learning algorithm that is
affected by the outlier. The filled in instances represent border points.

71.6% on all of the data sets and from 63.6% to 69.0% on

data sets that had more than 10% of the instances identified

as ISMs.

We also broadly investigate how outliers (as defined

using different outlier detection methods) and noise affect

the classification accuracy. In addition to PRISM, we use

three outlier detection methods and 1 noise reduction algo-

rithm; a distance-based approach [17], local outlier factor

(LOF) [3], the enhanced class outlier distance based algo-

rithm (ECODB) [18], and repeated edited nearest neighbor

(RENN) [24]. The distance approach and LOF identify the

traditional outliers and slightly decrease the classification

accuracy. The other methods take the class label into account

and improve classification accuracy.

Section II describes the experimental methodology. Sec-

tion III describes how PRISM detects ISMs and, as an

extension, how we identify instances as border points. The

results are then presented in Section IV. We review related

works in Section V and conclude in Section VI.

II. EXPERIMENTAL METHODOLOGY

We examine how filtering affects the classification ac-

curacy of 53 data sets and 9 learning algorithms trained

with and without filtering. The learning algorithms were

chosen with the intent of being representative of a diverse

set of learning algorithms commonly used in practice. The

algorithms that were used are shown in Table I. No param-

eter optimization was performed on any of the algorithms.

They were used as implemented in Weka with their default

parameters since we are interested in the effect that filtering

has rather than parameter tuning [25]. The set of 53 data sets

was selected from the UCI Machine Learning Repository [2].

This set was built to include data sets that vary significantly

along important dimensions such as the number of attributes,

the types of the attributes, the number of instances and the

application domain. All of the data sets have a percentage of

instances that are identified as outliers ranging from 0.1% to

52%. Each data set and algorithm is evaluated using 10-fold

cross-validation on the filtered data set. The instances that

are filtered (outliers/noise) are evaluated on a model trained

using all of the non-filtered instances.

TABLE I

LIST OF LEARNING ALGORITHMS.

Learning Algorithms

Decision Tree (C4.5 [16]) {C4.5}
Naı̈ve Bayes {NB}
Multi-layer Perceptron trained with Back
Propagation {MLP}

Perceptron {Percep}
Support Vector Machine {SVM}
1-NN (1-nearest neighbor) {IB1}
5-NN (5-nearest neighbors) {IB5}
Repeated Incremental Pruning to Produce
Error Reduction) {RIPPER}

RBF Network {RBF}

To examine the effect of filtering on classification accu-

racy, we first determine which instances to filter and remove

them from the training set. We use the following outlier

detection and noise reduction methods to filter instances:

• A distance-based approach as implemented by Rama-

swamy et al [17] that ranks each instance based on its

distance to its k nearest neighbors. The instances with

the top n rankings are identified as outliers. This method

partitions the data set to accommodate large data sets.

• LOF (Local Outlier Factor) [3] is an approach loosely

related to density-based clustering that assigns each

instance a value representing its potential of being an

outlier with respect to the instances in its neighborhood.

In this work, we identified the instances with the top n

LOF values as outliers.

• ECODB (Enhanced Class Outlier Distance Based) [18]

is an outlier detection approach that takes the class

label into account. ECODB chooses as outliers the top

n instances that have the smallest distance to their k-

nearest neighbors, the greatest deviation, and a different

class label from its k-nearest neighbors.

• RENN (Repeated Edited Nearest Neighbor) [24] repeat-

edly removes instances that are misclassified by a 3-NN

classified until no instances are misclassified.

• PRISM (P Reprocessing Instances that Should be Mis-

classified) removes instances that should be misclassi-

fied by a learning algorithm. PRISM is described in

Section III.

We used RapidMiner [13] to implement the first three outlier

detection methods. Once the datasets are filtered, we evaluate

each learning algorithm using 10-fold cross-validation using

the filtered dataset for training and the whole data set for

testing. We then compare these results to those obtained by

training the learning algorithm using all of the instances. In

addition to filtering instances, we also identify instances as

ISMs, border points or others as described in Section III.



III. PRISM AND INSTANCE TYPES

PReprocessing Instances that Should be Misclassified or

PRISM filters instances that should be misclassified. By

“should be misclassified,” we mean that based on the in-

formation in the dataset, the label assigned by the learning

algorithm is the most appropriate even though it is incorrect.

PRISM uses heuristics from Smith et al [21] to identify

instances that should be misclassified. They conducted a

comprehensive empirical analysis of what causes instances to

be misclassified and found that class overlap is the primary

contributor to misclassification. The work is summarized here

to provide context for the heuristics that are used to identify

ISMs. First, each instance is assigned an instance hardness

value to determine which instances are intrinsically hard

to correctly classify. The instance hardness values for each

instance in a set of 57 data sets was collected on 9 learning

algorithms using the following equation:

instance hardness(x) =

∑N

i incorrect(LAi, x)

N

where x is the data instance, N is the number of learning

algorithms, and incorrect(LA, x) is a function returning

1 if an instance x was misclassified by the learning algo-

rithm LA, and 0 otherwise. The hardest instances are those

which no learning algorithm correctly classifies and are what

PRISM attempts to filter. Their hardness value is 1. To avoid

having to run all nine learning algorithms over each novel

instance and to generalize the instances that are hard to

correctly classify, we use five heuristics to predict instance

hardness and to filter the instances.

The first heuristic, k-Disagreeing Neighbors (kDN), mea-

sures the local overlap of an instance in the original task

space. The kDN of an instance is the percentage of that

instance’s k nearest neighbors (using Euclidean distance) that

do not share its target class value.

kDN(x) =
| {y : y ∈ kNN(x) ∧ t(y) 6= t(x)} |

k

where kNN(x) is the set of k nearest neighbors of x and t(x)
is the target class value associated with x.

The next heuristic examines the disjunct size and measures

how tightly the learning algorithm has to divide the task

space to correctly classify an instance and the complexity

of the decision boundary. The Disjunct Size (DS) of an

instance is the number of instances in a disjunct divided by

the number of instances covered by the largest disjunct in a

data set.

DS(x) =
| disjunct(x) | −1

maxy∈D | disjunct(y) | −1

where the function disjunct(x) returns the disjunct that

covers instance x, and D is the data set that contains instance

x. The disjuncts are formed using a C4.5 decision tree,

created without pruning and setting the minimum number

of instances per leaf node to 1 [16].1 In a decision tree, the

disjuncts are the leaf nodes.

The third heuristic measures an instance’s overlap on a

subset of the features. C4.5 forms disjuncts but uses pruning.

Using a pruned tree, the Disjunct Class Percentage (DCP) of

an instance is the number of instances in a disjunct belonging

to its class divided by the total number of instances in the

disjunct.

DCP (x) =
| {z : z ∈ disjunct(x) ∧ t(z) = t(x)} |

| disjunct(x) |

The fourth heuristic provides a global measure of overlap

using all of the instances and attributes and a measure of

the likelihood of an instance belonging to a class. The

Class Likelihood (CL) of the attribute values for an instance

belonging to a certain class is defined as

CL(x, t(x)) =

|x|
∏

i

P (xi|t(x))

where xi is the value of instance x on its ith attribute.

Continuous variables are assigned a probability using a

kernel density estimation [9].

The fifth heuristic captures the difference in likelihoods

and global overlap. The Class Likelihood Difference (CLD)

is the difference between the class likelihood of an instance

and the maximum likelihood for all of the other classes.

CLD(x, t(x)) = CL(x, t(x))− argmax
y∈Y−t(x)

CL(x, y)

Using these heuristics we can identify instances that

should be misclassified (ISMs) by assuming that ISMs have

high instance hardness values. We can also identify instances

as border points and other by assuming that the instance

hardness values for border points range between 0.11 and 1,

and that other instances have a low instance hardness values.

Based on these observations and the correlation between

instance hardness and the heuristics, we identify an instance

as a ISM or a border point using the following equation.

type(x) =


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ISM if CLD(x, t(x)) < 0 &&
((DS(x) == 0 &&
DCP (x) < 0.5)||
DN(x) > 0.8)

border else if (DS(x) == 0 &&
DCP (x) < 1) ||
DN(x) > 0.2

other otherwise

That is, an instance is first identified as a ISM if the wrong

class has the highest class likelihood for the instance and

it meets one of two conditions: 1) the average DN value2

1Note that C4.5 will create fractional instances in a disjunct for instances
with unknown attribute values, possibly leading to DS values less than 1.
Such cases are treated as though the disjunct covered a single instance.

2To factor out the effect of neighborhood size, we use DN(x) rather
than kDN(x), where DN(x) is the average of kDN(x) over all values
of k between 1 and 17. Setting DN above 0.8 implies that on average, for
every 5 instances in the neighborhood, at least 4 disagree with the instance
under consideration.



TABLE II

THE AVERAGE ACCURACY FOR THE NINE CONSIDERED LEARNING ALGORITHMS AND VOTING ENSEMBLE ON THE DATA SETS AND THE p-VALUES

USING THE WILCOXON SIGNED-RANKS TEST COMPARING TRAINING WITH THE ORIGINAL DATASET AND TRAINING WITHOUT REMOVING ISMS.

>= 10% AVERAGES THE DATA SETS WITH AT LEAST 10% OF THE INSTANCES BEING ISMS ACCORDING TO INSTANCE TYPE (ISMS, BORDER POINTS,

AND OTHER). < 10% AVERAGES THE DATA SETS WITH LESS THAN 10% OF THE INSTANCES BEING ISMS AND “OVERALL” AVERAGES ALL OF THE

DATA SETS. “ORIG” USES ALL OF THE DATA TO TRAIN THE LEARNING ALGORITHMS AND “NOISM” REFERS TO TRAINING THE LEARNING

ALGORITHMS WITHOUT ISMS.

Classifier
>= 10%

p-value
<10%

p-value
Overall

p-value
Orig NoISM Orig NoISM Orig NoISM

A
ll

C4.5 0.601 0.617 0.0681 0.860 0.864 0.1170 0.802 0.808 0.0244
IB1 0.529 0.587 0.0032 0.834 0.851 <0.0001 0.765 0.792 <0.0001
IB5 0.577 0.617 0.0436 0.852 0.869 <0.0001 0.790 0.812 <0.0001
MLP 0.595 0.626 0.0571 0.871 0.883 0.0495 0.808 0.825 0.0113
NB 0.578 0.581 0.2451 0.804 0.815 0.0015 0.753 0.762 0.0017

Perceptron 0.574 0.597 0.0217 0.851 0.857 0.2358 0.788 0.798 0.0548

RBFNet 0.538 0.566 0.0392 0.850 0.856 0.0066 0.779 0.791 0.0021
RIPPER 0.545 0.584 0.0087 0.846 0.851 0.0436 0.778 0.790 0.0027
SVM 0.604 0.619 0.0571 0.856 0.862 0.0351 0.799 0.807 0.0089

Average 0.571 0.599 0.0040 0.847 0.856 <0.0001 0.785 0.798 <0.0001
Voting 0.573 0.599 0.0089 0.885 0.891 0.0778 0.814 0.825 0.0041

IS
M
s

C4.5 0.073 0.061 >0.05 0.186 0.158 0.4090 0.160 0.136 0.2843

IB1 0.104 0.086 >0.05 0.174 0.149 0.0003 0.158 0.135 0.0006
IB5 0.117 0.078 >0.05 0.150 0.133 0.0008 0.143 0.121 0.0033
MLP 0.184 0.082 0.0197 0.203 0.193 0.0582 0.198 0.168 0.0069
NB 0.051 0.044 >0.05 0.133 0.125 0.2005 0.115 0.107 0.1492

Perceptron 0.133 0.076 0.0037 0.141 0.128 0.2912 0.139 0.117 0.0329
RBFNet 0.103 0.066 0.0089 0.233 0.174 0.0011 0.204 0.149 0.0001
RIPPER 0.135 0.108 <0.01 0.216 0.157 0.0618 0.198 0.146 0.0179
SVM 0.192 0.149 0.0392 0.128 0.118 0.0287 0.143 0.125 0.0044

Average 0.121 0.083 0.0052 0.174 0.148 0.0016 0.162 0.134 0.0001
Voting 0.090 0.064 >0.05 0.183 0.128 0.0146 0.162 0.114 0.0045

B
o
rd
er

p
o
in
ts

C4.5 0.672 0.709 0.0485 0.755 0.751 0.4920 0.737 0.741 0.0853

IB1 0.567 0.664 0.0024 0.632 0.679 0.0001 0.617 0.675 <0.0001
IB5 0.641 0.719 0.0032 0.660 0.708 0.0001 0.656 0.710 <0.0001
MLP 0.659 0.729 0.0052 0.752 0.769 0.2005 0.731 0.760 0.0060
NB 0.676 0.683 0.3707 0.680 0.696 0.0197 0.679 0.693 0.0036

Perceptron 0.639 0.682 0.0068 0.720 0.724 0.3409 0.702 0.714 0.1038

RBFNet 0.603 0.654 0.0087 0.716 0.731 0.0485 0.691 0.713 0.0009
RIPPER 0.592 0.663 0.0051 0.722 0.735 0.2266 0.693 0.719 0.0071
SVM 0.676 0.708 0.0150 0.713 0.719 0.2451 0.705 0.717 0.0239

Average 0.636 0.690 0.0015 0.706 0.723 0.0008 0.690 0.716 <0.0001
Voting 0.662 0.711 <0.01 0.774 0.784 0.1190 0.749 0.767 0.0060

O
th
er

C4.5 0.878 0.991 0.0500 0.962 0.969 0.0028 0.945 0.973 0.0003
IB1 0.892 0.985 0.0050 0.988 0.993 0.0150 0.969 0.992 0.0002
IB5 0.943 1.000 NEI 0.997 0.999 0.0018 0.986 0.999 0.0002
MLP 0.922 0.982 0.0500 0.977 0.987 0.0006 0.966 0.986 0.0001
NB 0.882 0.990 NEI 0.912 0.918 0.0222 0.906 0.932 0.0052

Perceptron 0.959 0.876 >0.05 0.971 0.975 0.0307 0.969 0.955 0.0170
RBFNet 0.939 0.973 >0.05 0.961 0.968 0.0080 0.957 0.969 0.0024
RIPPER 0.914 0.928 NEI 0.956 0.958 0.1711 0.948 0.952 0.0668

SVM 0.990 0.992 NEI 0.977 0.981 0.0060 0.979 0.983 0.0044
Average 0.924 0.968 0.0027 0.967 0.972 0.0001 0.958 0.971 <0.0001
Voting 0.995 0.998 NEI 0.995 0.996 0.2420 0.995 0.997 0.1131

is greater than 0.8; or 2) the instance is the only instance

covered by the unpruned disjunct and the instance belongs

to the minority class of the instances covered by a pruned

disjunct. Therefore, a ISM disagrees with at least 80% of its

neighbors or it is the only instance belonging to a disjunct

and after pruning it is a minority class in the disjunct. If an

instance is not a ISM, it is evaluated to determine if it is a

border point. An instance is a border point if it satisfies one

of the following two conditions: 1) the average DN value

is greater than 0.2; or 2) the instance is the only instance

covered by an unpruned disjunct and all of the instances

covered by the pruned disjunct do not belong to the same

class. If an instance is neither a ISM nor a border point, it is

identified as other signifying that there is no or little class

overlap. The values chosen in the heuristics were chosen

based on empirical data to correlate with instance hardness

[21]. In the following experiments, the other outlier detection

methods are set to identify the same number of outliers as

PRISM detected.

IV. RESULTS

This section presents the results of the experiments. Re-

moving ISMs by PRISM for training increases the classifica-

tion accuracy significantly. Only accuracy for the perceptron



learning algorithm is not significantly changed by training

without the ISMs as shown in the top part of Table II. This

may be due to the perceptron’s inability to overfit the data and

causing it to naturally ignore ISMs and hard instances. The

change is most significant for the nearest neighbor learning

algorithms.

To further determine the effectiveness of training without

the ISMs, we examine the accuracy of the learning algo-

rithms in the context of instance types. Table II shows the

average accuracy for each of the nine considered learning

algorithms and for a voting ensemble according to instance

type on the datasets, where “>= 10%” averages the data

sets with at least 10% of the instances being ISMs, “< 10%”

averages those data sets with less than 10% of the instances

being ISMs and “Overall” averages all of the data sets.

“Orig” uses all of the data to train the learning algorithms

and “NoISM” refers to training the learning algorithms

without ISMs. The p-values are from the Wilcoxon signed-

rank test and values in bold represent those that are not

statistically significant with alpha equal to 0.05. The average

classification accuracy and the voting ensemble are included

to provide insight at a higher level than an individual learning

algorithm. The change in classification accuracy by removing

the ISMs for training is statistically significant in the majority

of the cases.

The classification accuracy on the ISMs decreases for all

learning algorithms when filtering with PRISM, which is

expected since ISMs should not be learned by the learning

algorithms and ISMs should be misclassified. The change

is not significant for C4.5 and naı̈ve Bayes. When 10% or

more of the instances are ISMs, the change in accuracy is

not significant for C4.5, IB1, IB5, and naı̈ve Bayes while

C4.5, MLP, naı̈ve Bayes, perceptron, and RIPPER are not

statistically significant when less than 10% of the instances

are ISMs. The non-significance is important as it shows that

the learning algorithms correctly misclassify ISMs. RBFNet

and SVM appear to be most affected by ISMs as the change

in classification accuracy is always significant.

By removing the ISMs for training, there is significant

improvement for all of the learning algorithms on the border

points except for C4.5 and perceptron. The increase is by as

much as 10% for the data sets where 10% or more of the

instances are ISMs. Only the naı̈ve Bayes learning algorithm

does not have a significant increase in classification on the

border points on datasets with 10% or more ISMs. The

increase is less or not significant on the border points on

datasets with less than 10% ISMs and actually decreases

slightly for C4.5.

For the other instances, there was not enough information

(NEI in the table) to determine if the change in classification

accuracy was significant for some of the learning algorithms.

This is due in part to both methods being equivalent on some

data sets. The change is significant for all of the learning

algorithms except for RIPPER and the voting ensemble,

although removing the outliers does not decrease the classi-

fication either. For all of the other learning algorithms, there

is a significant increase in classification accuracy. Thus, the

presence of ISMs does affect non-ISM instances.

We also compared PRISM with other filtering techniques.

When comparing the other filtering methods, only 48 of the

53 data sets are used. Five of the data sets were omitted

because the distance approach, LOF, and/or ECODB ran out

of memory (15 GB) when running on them. To determine

statistical significance, we used the Friedman test and post-

hoc tests as well as the Wilcoxon Signed-Ranks test as

suggested by Demšar [5].

TABLE III

THE AVERAGE CLASSIFICATION ACCURACY FOR EACH LEARNING

ALGORITHM TRAINED WITH AND WITHOUT FILTERING.

Orig Dist LOF ECODB RENN PRISM

C4.5 0.803 0.794 0.802 0.807 0.805 0.809

IB1 0.771 0.773 0.773 0.784 0.809 0.797
IB5 0.791 0.789 0.793 0.802 0.822 0.814
MLP 0.813 0.814 0.814 0.822 0.829 0.831

NB 0.765 0.773 0.767 0.772 0.774 0.776

Percept 0.801 0.803 0.798 0.808 0.811 0.812

RBFNet 0.796 0.791 0.792 0.797 0.807 0.806

RIPPER 0.787 0.787 0.788 0.792 0.790 0.798

SVM 0.805 0.803 0.801 0.810 0.808 0.814

Overall 0.792 0.792 0.792 0.799 0.806 0.806

Table III shows the average classification accuracy on the

test sets with and without filtering for each learning algorithm

trained on the different subsets of data used for training.

“Orig” refers to using the whole data set for training. The

“Dist,” “LOF,” “ECODB,” “RENN,” and “PRISM” columns

remove instances that were identified as outliers for training

using the distance approach, LOF, ECODB, RENN, and

PRISM methods respectively. The values in bold are the

highest classification accuracy or within 0.5% of the highest

classification accuracy for each learning algorithm. RENN

and PRISM achieve the highest overall classification accu-

racy and a higher classification accuracy than Orig for all of

the learning algorithms.

TABLE IV

THE AVERAGE RANK FOR EACH LEARNING ALGORITHM ON 48 DATA

SETS TRAINED WITH AND WITHOUT FILTERING.

Algorithm Orig Dist LOF ECODB RENN PRISM

C4.5 3.38 4.33 3.58 3.44 3.46 2.81

IB1 4.30 4.29 4.10 3.38 2.24 2.69
IB5 4.08 4.48 4.08 3.51 2.43 2.42

MLP 3.47 4.10 3.88 3.65 3.08 2.82

NB 4.06 3.53 3.67 3.5 3.33 2.91

Percept 3.44 3.75 3.79 3.76 3.30 2.96

RBFNet 3.63 3.94 3.84 3.74 3.01 2.84

RIPPER 3.98 3.83 3.77 3.02 3.72 2.68

SVM 3.54 3.73 3.70 3.5 3.64 2.90

Overall 3.76 4.00 3.82 3.50 3.13 2.78

The effectiveness of each method is further shown by

ranking the classification accuracy for each filtering method

as shown in Table IV. The lowest rank is desired. The

values in bold indicate the best average rank. Removing

outliers using PRISM has the lowest rank overall and for



TABLE V

THE AVERAGE CLASSIFICATION ACCURACY FOR EACH LEARNING ALGORITHM TRAINED WITH VARIOUS SUBSETS OF THE DATA SET.

Data Set % ISMs Orig Dist p-value LOF p-value ECODB p-value RENN p-value PRISM p-value

Breast Uterus 0.009 0.961 0.959 >0.05 0.962 >0.05 0.961 >0.05 0.966 >0.05 0.972 <0.025

ar1 0.05 0.901 0.917 0.005 0.881 0.025 0.907 >0.05 0.926 <0.05 0.915 0.05

cm1 req 0.056 0.725 0.734 >0.05 0.742 >0.05 0.74 >0.05 0.775 0.01 0.774 0.025

desharnais 0.148 0.641 0.664 >0.05 0.636 >0.05 0.641 >0.05 0.665 >0.05 0.661 >0.05
eucalyptus 0.179 0.578 0.56 >0.05 0.553 <0.025 0.576 >0.05 0.612 >0.05 0.600 <0.05

pasture 0.056 0.713 0.698 >0.05 0.688 >0.05 0.71 >0.05 0.772 0.01 0.744 <0.05

Average 0.083 0.753 0.755 >0.05 0.744 >0.05 0.756 >0.05 0.786 0.05 0.778 0.01

each learning algorithm except for IB1. PRISM is the only

outlier detection method that is ranked lower than using

the original dataset for every learning algorithm. PRISM’s

overall ranking is the furthest away from 3.5 and only PRISM

and RENN have a ranking lower than 3.5. The Friedman test

rejects the null hypothesis that each subset of the original

dataset used for training is equivalent with a p-value less than

0.01. Thus, classification accuracy is affected by removing

outliers. The Friedman test only rejects the null hypothesis

that every method should have the same rank (3.5 in this

case). To compare the different methods for identifying

outliers, we perform post-hoc tests as described by Demšar

[5].

The Bonferroni-Dunn significance test was used to com-

pare training the learning algorithms trained with filtered

data sets against using the original data set for training.

The test indicated that the distance approach (decrease in

classification accuracy) and RENN and PRISM (increase

in classification accuracy) are statistically different from

training with the original data set with an alpha value of 0.05.

We also compared PRISM against the distance approach,

LOF and ECODB. The difference in classification accuracy

between using PRISM to remove outliers and the other

approaches is statistically significant with an alpha value

of 0.05. These results were confirmed using Holm’s and

Hochenberg’s procedures.

This shows that preprocessing a dataset before train-

ing affects classification accuracy. Filtering by PRISM and

RENN do the best at increasing the classification accuracy

overall. To a lesser extent, ECODB in general also increases

classification accuracy and is statistically significant using the

Wilcoxon signed-ranks test. Also, the increase in classifica-

tion accuracy by PRISM and RENN is statistically significant

and the decrease in accuracy by the distance approach and

LOF are statistically insignificant with alpha equal to 0.05.

We also examined removing outliers during training on

a test set of six non-UCI datasets drawn from a number

of different fields: bioinformatics [22], agriculture [23], and

software engineering [19] to demonstrate that PRISM is

effective on novel data sets. Because the heuristics were

discovered on UCI datasets, this set of data sets was used

as a test set to ensure that the heuristics generalize well.

The percentage of ISMs in the data sets range from 0.9%

to 17.9%. The results are summarized in Table V. Each row

gives the percentage of ISMs that each data set contains,

the average accuracy for each training set and the p-value

for the change in accuracy using the Wilcoxon signed-rank

test. The highest classification accuracies and the p-values

that are statistically significant are in bold with alpha equal

to 0.05. PRISM and RENN achieve the highest classification

accuracy on each data set and provide an average increase of

2.5%. The other methods often result in lower classification

accuracy. The change in accuracy by PRISM is also statisti-

cally significant for all of the data sets except for desharnais

where as RENN is statistically significant for only three of

the datasets. Table VI shows how each learning algorithm

performed on the additional set of data sets. PRISM and

RENN provide the highest classification accuracy for all of

the learning algorithms.

TABLE VI

THE AVERAGE CLASSIFICATION ACCURACY FOR EACH LEARNING

ALGORITHM TRAINED WITH VARIOUS SUBSETS OF THE ADDITIONAL

DATA SETS.

Orig Dist LOF ECODB RENN PRISM

C4.5 0.780 0.769 0.751 0.775 0.781 0.808

IB1 0.733 0.734 0.718 0.736 0.792 0.769
IB5 0.737 0.753 0.729 0.748 0.792 0.771
MLP 0.745 0.758 0.771 0.766 0.806 0.796
NB 0.727 0.721 0.720 0.744 0.760 0.763

Percept 0.746 0.761 0.751 0.752 0.787 0.769
RBFNet 0.751 0.733 0.725 0.736 0.767 0.747
RIPPER 0.785 0.789 0.749 0.772 0.787 0.805

SVM 0.774 0.780 0.779 0.775 0.801 0.772

Overall 0.753 0.755 0.744 0.756 0.786 0.778

Finally, we examine the effect of traditional outliers. We

have shown that ISMs affect the classification accuracy of

a data set by pulling the classification boundary toward

the wrong class. Outliers could also pull the classification

boundary in the other direction. Could the accuracy be

increased even more by handling the outliers as well as

the ISMs? To determine the effect of removing both ISM

and outliers for training, we combine the set of ISMs from

PRISM with the outliers using the distance method, LOF, and

ECODB. 32.7%, 36.7%, and 37.8% of the outliers identified

by the distance approach, LOF, and ECODB overlap with

the set of ISMs found by PRISM.

Combining the instances identified by PRISM and an out-

lier detection method results in a loss of accuracy compared

to using PRISM by itself. The loss, however, is only 0.8%

on average and is not statistically significant with an alpha

of 0.05 using the Wilcoxon signed-rank test. By definition,

outliers are instances that are different than other instances



and/or are in an underrepresented area of the task space.

By removing the outliers, there is no information for the

learning algorithm to generalize well on them. Thus, remov-

ing them can be detrimental to the classification accuracy.

However, removing the combination of outliers identified

by PRISM and another outlier detection method resulted

in a higher classification accuracy than just using the other

outlier detection method. For each outlier detection method,

the increase in accuracy is statistically significant with a p-

value less than or equal to 0.0001. Thus, ISMs most directly

affect the classification boundaries produced by the learning

algorithms.

V. RELATED WORK

Outlier detection has received growing attention, espe-

cially from the data mining community where outliers may

represent anomalies or points of focus [1, 11, 15]. One

difficulty in outlier detection is that there is no agreed upon

definition of what constitutes an outlier. As such, outlier

detection methods have used synthetic data sets or have

injected noisy instances into a data set to establish which

instances are outliers, thereby making assumptions about

the characteristics of outliers. Also, there are many outlier

detection algorithms from a variety of fields using different

approaches; a few techniques are reviewed here. Khoshgof-

taar et al [10] use a rule-based outlier detection method to

remove outliers. They analyzed their approach by artificially

injecting noise into clean data from software measurement

data of a NASA software project. Liu et al [12] present an

ensemble method for detecting outliers similar to boosting.

In boosting, each training instance is assigned a weight. This

method is augmented by adding a weight to each attribute

(information gain) and outliers are detected by comparing the

weights of the training instances. Finally, rules are generated

that result in the largest attribute weight information gain. An

approach loosely related to density-based clustering is Local

Outlier Factor (LOF) [3]. LOF assigns each instance a value

representing its potential of being an outlier with respect

to the instances in its neighborhood. A thorough survey of

outlier detection methodologies is provided by Hodge and

Austin [8].

The concept of class outlier mining has also been exam-

ined [7, 14]. The goal of class outlier mining is to detect

outliers taking into account the class label. For example,

Semantic Outlier Factor (SOF) [6] is a class outlier mining

approach based on applying a clustering technique that takes

the class label into account. ECODB [18], used in this work,

is another example of class outlier mining. PRISM is similar

to these approaches in that it takes the class label into

account. PRISM differs from the other methods in that it also

takes into account the expected classification of the instance.

Closely related to class outlier mining is noise reduction

[24, 20] that attempts to identify and remove mislabeled

instances. For example, Brodley and Friedl [4] attempt to

identify mislabeled instances using an ensemble of classi-

fiers. Rather than determining if an instance is mislabeled,

PRISM filters instances that should be misclassified. The

sets of removed instances from the PRISM and other noise

reduction techniques will expectedly be similar. A different

approach by Zeng and Martinez [26] uses multi-layer per-

ceptrons that changes the class label on suspected outliers

assuming that the wrong label was assigned to that instance.

Our work does not focus on a single learning algorithm,

but rather examines the effects of instances that should be

misclassified in a broader context.

VI. CONCLUSIONS

In this paper we introduced PRISM, a novel filtering

method that identifies instances that should be misclassified

(ISMs). We used a composite heuristic to identify ISMs that

combines ideas from multiple learning algorithms. We have

shown that noise and outliers do affect how learning algo-

rithms model the data. However, noise and outlier detection

and removal is difficult because there is no universal defini-

tion of what an outlier actually is or if an instance is noisy. In

addition to PRISM, we used 3 outlier detection approaches

and 1 noise reduction method to train 9 learning algorithms

with filtering and compared the results to those from the

learning algorithms trained using the original data set. RENN

and PRISM both resulted in higher classification accuracy

and consistently ranked better than the other approaches.

PRISM consistently ranked the best among all of the filtering

approaches. The distance-based approach and LOF did not

show an improvement in classification accuracy but did allow

a speed up in training by having less instances to train. The

distance-based approach and LOF both ranked worse than

training with the original data set.

Removing instances identified by RENN and PRISM for

training achieved the highest overall classification accuracy

compared with the learning algorithms trained on the original

data sets as well as with outliers removed by the other meth-

ods. With PRISM, we were able to achieve improvements in

classification accuracy regardless of the learning algorithm

being evaluated. On average, the increase in accuracy was

about 1.3%. However, on data sets where more than 10%

of the instances are ISMs, the increase on average is 2.8%

compared to 1.2% for data sets with less than 10% ISMs.

Rather than focusing on correctly classifying the instances

that should be misclassified and arbitrarily adjusting the clas-

sification boundary, removing the ISMs for training allows

the learning algorithms to focus on the instances that can

be correctly classified. Removing the ISMs allows a more

appropriate decision surface to be discovered since the ISMs

do not arbitrarily pull the decision surface from its more

optimal position. This leads to higher classification accuracy.

The presence of noise and outliers affects the learned

model as the accuracy on border points and other instances

increases when the model is trained on filtered data. Learning

algorithms such as C4.5 and multi-layer perceptrons are more

robust to outliers in the training data than other models but

removing the outliers for training improved their classifica-

tion accuracy as well as the less robust learning algorithms.

Examining each instance type, the accuracy for the ISMs

decreased as would be expected, but the accuracy of the



border points and other instances increased sufficiently to

provide an overall increase in accuracy despite the decrease

on the ISMs.

Another advantage to identifying ISMs is for evaluation.

The instances that should be misclassified can be handled

differently. For example, all of the outliers can be ignored

when calculating classification accuracy since the outliers

should be misclassified. The accuracy would then give more

insight as to how closely the learning algorithms models

the data. Using this approach for evaluation, ignoring the

ISMs during training increases the classification accuracy on

average by 1.94% as compared to when training using all

of the instances. Ignoring outliers during training is most

effective with a high percentage of instances being outliers.

When 10% or more of the instances are outliers, the average

increase in classification accuracy is 5.0% compared to 1.1%

for data sets with less than 10% outliers.

Outliers and noise affect how learning algorithms model

a data set. By filtering noise and outliers for training, the

classification accuracy can be improved and the model will

more effectively model the data.
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