
X/Open CAE Specification

Distributed Transaction Processing:

The TX (Transaction Demarcation) Specification

X/Open Company Ltd.

 April 1995, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

X/Open CAE Specification

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification

ISBN: 1-85912-094-6
X/Open Document Number: C504

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.co.uk

ii X/Open CAE Specification

Contents

Chapter 1 Introduction... 1
 1.1 X/Open DTP Model... 1
 1.2 X/Open TX (Transaction Demarcation) Interface 2

Chapter 2 Model and Definitions.. 3
 2.1 X/Open DTP Model... 3
 2.1.1 Functional Components ... 4
 2.1.2 Interfaces between Functional Components...................................... 5
 2.2 Definitions .. 7
 2.2.1 Transaction .. 7
 2.2.2 Transaction Properties .. 7
 2.2.3 Distributed Transaction Processing ... 7
 2.2.4 Global Transactions ... 8
 2.2.5 Thread of Control .. 8

Chapter 3 C-language Interface Overview .. 9
 3.1 Index to Services in the TX Interface .. 10
 3.2 Opening and Closing Resource Managers .. 10
 3.3 Beginning and Completing Global Transactions 11
 3.3.1 Heuristic Completion ... 11
 3.4 Setting the Commit Return Point .. 11
 3.5 Chained and Unchained Transactions.. 12
 3.6 Transaction Timeout .. 12
 3.7 Information on the Global Transaction .. 12
 3.8 Transaction Characteristics... 13
 3.8.1 The commit_return Characteristic ... 13
 3.8.2 The transaction_control Characteristic ... 13
 3.8.3 The transaction_timeout Characteristic.. 13

Chapter 4 The <tx.h> Header ... 15
 4.1 Naming Conventions... 15
 4.2 Transaction Information.. 15
 4.3 Return Codes ... 17

Chapter 5 C Reference Manual Pages... 19
 tx_begin() ... 20
 tx_close() .. 22
 tx_commit().. 23
 tx_info ().. 25
 tx_open() .. 26
 tx_rollback ()... 27
 tx_set_commit_return() .. 29

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification iii

Contents

 tx_set_transaction_control () .. 31
 tx_set_transaction_timeout () ... 32

Chapter 6 COBOL Reference Manual Pages .. 33
 TXINTRO... 34
 TXBEGIN ... 36
 TXCLOSE... 38
 TXCOMMIT .. 39
 TXINFORM... 41
 TXOPEN .. 43
 TXROLLBACK ... 44
 TXSETCOMMITRET... 46
 TXSETTIMEOUT ... 48
 TXSETTRANCTL... 49

Chapter 7 State Table .. 51

Chapter 8 Implementation Requirements ... 53
 8.1 Application Program Requirements... 53
 8.2 Resource Manager Requirements.. 53
 8.3 Transaction Manager Requirements... 54

Appendix A <tx.h> C Header... 55

Appendix B Suggested Mappings to the XA Interface................................ 59
 B.1 Overview .. 59
 B.2 Function Call Mappings.. 60
 B.3 General Rules for Mapping of Return Codes.. 62
 B.4 Suggested Mapping of Return Codes: Single RM................................ 64
 B.5 Suggested Mapping of Return Codes: Multiple RMs 67

 Index... 71

List of Figures

2-1 Functional Components and Interfaces .. 3
3-1 The TX (Transaction Demarcation) Interface... 9

List of Tables

3-1 C-Language TX Functions ... 10
3-2 Table of Transaction Characteristics .. 13
7-1 C-language State Table ... 52

iv X/Open CAE Specification

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable open system environment, called the
Common Applications Environment (CAE). This environment covers the standards, above the
hardware level, that are needed to support open systems. It provides for portability and
interoperability of applications, and so protects investment in existing software while enabling
additions and enhancements. It also allows users to move between systems with a minimum of
retraining.

X/Open defines this CAE in a set of specifications which include an evolving portfolio of
application programming interfaces (APIs) which significantly enhance portability of
application programs at the source code level, along with definitions of and references to
protocols and protocol profiles which significantly enhance the interoperability of applications
and systems.

The X/Open CAE is implemented in real products and recognised by a distinctive trade mark —
the X/Open brand — that is licensed by X/Open and may be used on products which have
demonstrated their conformance.

X/Open Technical Publications

X/Open publishes a wide range of technical literature, the main part of which is focussed on
specification development, but which also includes Guides, Snapshots, Technical Studies,
Branding/Testing documents, industry surveys, and business titles.

There are two types of X/Open specification:

• CAE Specifications

CAE (Common Applications Environment) specifications are the stable specifications that
form the basis for X/Open-branded products. These specifications are intended to be used
widely within the industry for product development and procurement purposes.

Anyone developing products that implement an X/Open CAE specification can enjoy the
benefits of a single, widely supported standard. In addition, they can demonstrate
compliance with the majority of X/Open CAE specifications once these specifications are
referenced in an X/Open component or profile definition and included in the X/Open
branding programme.

CAE specifications are published as soon as they are developed, not published to coincide
with the launch of a particular X/Open brand. By making its specifications available in this
way, X/Open makes it possible for conformant products to be developed as soon as is
practicable, so enhancing the value of the X/Open brand as a procurement aid to users.

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification v

Preface

• Preliminary Specifications

These specifications, which often address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations, are
released in a controlled manner for the purpose of validation through implementation of
products. A Preliminary specification is not a draft specification. In fact, it is as stable as
X/Open can make it, and on publication has gone through the same rigorous X/Open
development and review procedures as a CAE specification.

Preliminary specifications are analogous to the trial-use standards issued by formal standards
organisations, and product development teams are encouraged to develop products on the
basis of them. However, because of the nature of the technology that a Preliminary
specification is addressing, it may be untried in multiple independent implementations, and
may therefore change before being published as a CAE specification. There is always the
intent to progress to a corresponding CAE specification, but the ability to do so depends on
consensus among X/Open members. In all cases, any resulting CAE specification is made as
upwards-compatible as possible. However, complete upwards-compatibility from the
Preliminary to the CAE specification cannot be guaranteed.

In addition, X/Open publishes:

• Guides

These provide information that X/Open believes is useful in the evaluation, procurement,
development or management of open systems, particularly those that are X/Open-
compliant. X/Open Guides are advisory, not normative, and should not be referenced for
purposes of specifying or claiming X/Open conformance.

• Technical Studies

X/Open Technical Studies present results of analyses performed by X/Open on subjects of
interest in areas relevant to X/Open’s Technical Programme. They are intended to
communicate the findings to the outside world and, where appropriate, stimulate discussion
and actions by other bodies and the industry in general.

• Snapshots

These provide a mechanism for X/Open to disseminate information on its current direction
and thinking, in advance of possible development of a Specification, Guide or Technical
Study. The intention is to stimulate industry debate and prototyping, and solicit feedback. A
Snapshot represents the interim results of an X/Open technical activity. Although at the time
of its publication, there may be an intention to progress the activity towards publication of a
Specification, Guide or Technical Study, X/Open is a consensus organisation, and makes no
commitment regarding future development and further publication. Similarly, a Snapshot
does not represent any commitment by X/Open members to develop any specific products.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision, in this case as the subject
technology develops and to align with emerging associated international standards. X/Open
makes a distinction between revised specifications which are fully backward compatible and
those which are not:

• a new Version indicates that this publication includes all the same (unchanged) definitive
information from the previous publication of that title, but also includes extensions or
additional information. As such, it replaces the previous publication.

vi X/Open CAE Specification

Preface

• a new Issue does include changes to the definitive information contained in the previous
publication of that title (and may also include extensions or additional information). As such,
X/Open maintains both the previous and new issue as current publications.

Corrigenda

Most X/Open publications deal with technology at the leading edge of open systems
development. Feedback from implementation experience gained from using these publications
occasionally uncovers errors or inconsistencies. Significant errors or recommended solutions to
reported problems are communicated by means of Corrigenda.

The reader of this document is advised to check periodically if any Corrigenda apply to this
publication. This may be done either by email to the X/Open info-server or by checking the
Corrigenda list in the latest X/Open Publications Price List.

To request Corrigenda information by email, send a message to info-server@xopen.co.uk with
the following in the Subject line:

request corrigenda; topic index
This will return the index of publications for which Corrigenda exist.

This Document

This document is a CAE Specification (see above). It defines the TX (Transaction Demarcation)
interface, which is the interface between an application program and a transaction manager.

The structure of the specification is as follows:

• Chapter 1 is an introduction.

• Chapter 2 provides fundamental definitions for the remainder of the document.

• Chapter 3 is an overview of the TX interface.

• Chapter 4 discusses the data structures that are part of the TX interface.

• Chapter 5 contains C reference manual pages for each routine in the TX interface.

• Chapter 6 contains COBOL reference manual pages for each routine in the TX interface.

• Chapter 7 contains the state table that describes the legal sequences in which calls to the TX
interface can be made.

• Chapter 8 summarises the implications of this specification on implementors.

• Appendix A contains a complete C header file that is required by the TX interface.

• Appendix B describes how the TX interface maps to the X/Open XA interface.

There is an index at the end.

Intended Audience

This document is intended for application programmers who wish to write portable programs
that use global transactions. It assumes familiarity with the X/Open documents Distributed
Transaction Processing Reference Model and Distributed Transaction Processing: The XA
Specification.

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification vii

Preface

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for filenames, keywords, type names, data structures and their
members.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— variable names, for example, substitutable argument prototypes and environment
variables

— C-language functions; these are shown as follows: name()

• Normal font is used for the names of constants and literals. COBOL function names are also
shown in normal font.

• The notation <file.h> indicates a C-language header file.

• Names surrounded by braces, for example, {ARG_MAX}, represent symbolic limits or
configuration values, which may be declared in appropriate C-language header files by
means of the C #define construct.

• The notation [ABCD] is used to identify a coded return value in C, or the value set in
COBOL.

• Syntax and code examples are shown in fixed width font.

• Variables within syntax statements are shown in italic fixed width font.

Note: Syntax statements use the same typographical conventions for C and COBOL.
Therefore COBOL syntax statements deviate from the referenced COBOL standard in
the following ways:

• No underlining is used with mandatory elements.

• No options are shown; for other valid formats see the X/Open COBOL Language
specification.

• Substitutable names are shown in italics.

viii X/Open CAE Specification

Trade Marks

X/Open is a registered trade mark, and the ‘‘X’’ device is a trade mark, of X/Open Company
Limited.

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification ix

Referenced Documents

COBOL
X/Open CAE Specification, December 1991, COBOL Language (ISBN: 1-872630-09-X, C192
or XO/CAE/91/200).

CPI-C, Version 2
X/Open Preliminary Specification, November 1994, The CPI-C Specification, Version 2,
X/Open Document Number P415, ISBN: 1-85912-057-1.

DTP
X/Open Guide, November 1993, Distributed Transaction Processing: Reference Model,
Version 2 (ISBN: 1-85912-019-9, G307).

ISO C
ISO/IEC 9899: 1990, Programming Languages — C (technically identical to ANSI standard
X3.159-1989).

OSI TP
ISO/IEC 10026-1: 1992, Information Technology — Open Systems Interconnection —
Distributed Transaction Processing, Parts 1 to 3:

Part 1: OSI TP Model
Part 2: OSI TP Service
Part 3: Protocol Specification.

SQL
X/Open CAE Specification, August 1992, Structured Query Language (SQL)
(ISBN: 1-872630-58-8, C201).

TxRPC
X/Open Preliminary Specification, July 1993, Distributed Transaction Processing: The
TxRPC Specification (ISBN: 1-85912-000-8, P305).

XA
X/Open CAE Specification, December 1991, Distributed Transaction Processing: The XA
Specification (ISBN: 1-872630-24-3, C193 or XO/CAE/91/300).

XA+
X/Open Snapshot, July 1994, Distributed Transaction Processing: The XA+ Specification,
Version 2 (ISBN: 1-85912-046-6, S423).

XAP-TP
X/Open Preliminary Specification, February 1994, ACSE/Presentation: Transaction
Processing API (XAP-TP) (ISBN: 1-872630-85-5, P216).

XATMI
X/Open Preliminary Specification, July 1993, Distributed Transaction Processing: The
XATMI Specification (ISBN: 1-872630-99-5, P306).

XDCS
X/Open Guide, November 1992, Distributed Computing Services (XDCS) Framework
(ISBN: 1-872630-64-2, G212).

x X/Open CAE Specification

Chapter 1

Introduction

This chapter provides an outline of the X/Open Distributed Transaction Processing (DTP) model
and gives an overview of the X/Open TX (Transaction Demarcation) Interface.

1.1 X/Open DTP Model
The X/Open Distributed Transaction Processing (DTP) model is a software architecture that
allows multiple application programs to share resources provided by multiple resource
managers, and allows their work to be coordinated into global transactions.

The X/Open DTP model comprises five basic functional components:

• an Application Program (AP), which defines transaction boundaries and specifies actions
that constitute a transaction

• Resource Managers (RMs) such as databases or file access systems, which provide access to
resources

• a Transaction Manager (TM), which assigns identifiers to transactions, monitors their
progress, and takes responsibility for transaction completion and for coordinating failure
recovery

• Communication Resource Managers (CRMs), which control communication between
distributed applications within or across TM domains

• a communication protocol, which provides the underlying communication services used by
distributed applications and supported by CRMs.

X/Open DTP publications based on this model specify portable Application Programming
Interfaces (APIs) and system-level interfaces that facilitate:

• portability of application program source code to any X/Open environment that offers those
APIs

• interchangeability of TMs, RMs and CRMs from various sources

• interoperability of diverse TMs, RMs and CRMs in the same global transaction.

Chapter 2 defines each component in more detail and illustrates the flow of control.

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 1

X/Open TX (Transaction Demarcation) Interface Introduction

1.2 X/Open TX (Transaction Demarcation) Interface
This document specifies the TX (Transaction Demarcation) interface; the application
programming interface (API) by which the AP calls the TM to demarcate global transactions and
direct their completion. X/Open is developing other interfaces for distributed transaction
processing; see the referenced DTP guide for an overview of the complete set of interfaces
specified for DTP.

Relevant definitions and other important concepts are discussed in Chapter 2. Chapter 3 is an
overview of the TX interface, describing the situations in which each of the services is used.
Chapter 4 discusses the data structures that are part of the TX interface. C Reference manual
pages for each routine in the TX interface are presented in Chapter 5 and COBOL manual pages
are presented in Chapter 6. Chapter 7 shows the legal sequences in which routines in the TX
interface may be called. Chapter 8 summarises the implications of this specification on the
implementors of APs and TMs; it also identifies features that are optional. Appendix A presents
the contents of the <tx.h> header file in both ISO C and Common Usage C. Appendix B
discusses the relationship of this interface to the interface published in the XA specification.
This appendix describes how the TX services map to the XA services, and how the XA return
codes map to the TX return codes.

2 X/Open CAE Specification

Chapter 2

Model and Definitions

This chapter discusses the TX interface in general terms and provides necessary background
material for the rest of the specification. The chapter shows the relationship of the interface to
the X/Open DTP model. The chapter also states the design assumptions that the interface uses
and shows how the interface addresses common DTP concepts.

2.1 X/Open DTP Model
The boxes in the figure below are the functional components and the connecting lines are the
interfaces between them. The arrows indicate the directions in which control may flow.

Application Program (AP)

(RMs) (TM)

Resource
Managers

Transaction
Manager

(5)(1)

(3)

(2)

SUPERIOR NODE

OSI TP

SUBORDINATE NODE

(CRMs)

Communication

Managers
Resource

(4)

AP

RMs TM

OSI TP

CRMs

(6)

Figure 2-1 Functional Components and Interfaces

Descriptions of the functional components shown can be found in Section 2.1.1 on page 4. The
numbers in brackets in the above figure represent the different X/Open interfaces that are used
in the model. They are described in Section 2.1.2 on page 5.

For more details on this model and diagram, including detailed definitions of each component,
see the referenced DTP guide.

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 3

X/Open DTP Model Model and Definitions

2.1.1 Functional Components

Application Program (AP)

The application program (AP) implements the desired function of the end-user enterprise. Each
AP specifies a sequence of operations that involves resources such as databases. An AP defines
the start and end of global transactions, accesses resources within transaction boundaries, and
normally makes the decision whether to commit or roll back each transaction.

Where two or more APs cooperate within a global transaction, the X/Open DTP model supports
three paradigms for AP to AP communication. These are the TxRPC, XATMI and CPI-C
interfaces.

Transaction Manager (TM)

The transaction manager (TM) manages global transactions and coordinates the decision to start
them, and commit them or roll them back. This ensures atomic transaction completion. The TM
also coordinates recovery activities of the resource managers when necessary, such as after a
component fails.

Resource Manager (RM)

The resource manager (RM) manages a defined part of the computer’s shared resources. These
may be accessed using services that the RM provides. Examples of RMs are database
management systems (DBMSs), a file access method such as X/Open ISAM, and a print server.

In the X/Open DTP model, RMs structure all changes to the resources they manage as
recoverable and atomic transactions. They let the TM coordinate completion of these
transactions atomically with work done by other RMs.

Communication Resource Manager (CRM)

A CRM allows an instance of the model to access another instance either inside or outside the
current TM Domain. Within the X/Open DTP model, CRMs use OSI TP services to provide a
communication layer across TM Domains. CRMs aid global transactions by supporting the
following interfaces:

• the communication paradigm (TxRPC, XATMI or CPI-C) used between an AP and CRM

• XA+ communication between a TM and CRM

• XAP-TP communication between a CRM and OSI TP.

A CRM may support more than one type of communication paradigm, or a TM Domain may use
different CRMs to support different paradigms. The XA+ interface provides global transaction
information across different instances and TM Domains. The CRM allows a global transaction to
extend to another TM Domain, and allows TMs to coordinate global transaction commit and
abort requests from (usually) the superior AP. Using the above interfaces, information flows
from superior to subordinate and vice versa.

4 X/Open CAE Specification

Model and Definitions X/Open DTP Model

2.1.2 Interfaces between Functional Components

There are six interfaces between software components in the X/Open DTP model. The numbers
correspond to the numbers in Figure 2-1 on page 3.

(1) AP-RM. The AP-RM interfaces give the AP access to resources. X/Open interfaces, such as
SQL and ISAM provide AP portability. The X/Open DTP model imposes few constraints
on native RM APIs. The constraints involve only those native RM interfaces that define
transactions. (See the referenced XA specification.)

(2) AP-TM. The AP-TM interface (the TX interface) provides the AP with an Application
Programming Interface (API) by which the AP coordinates global transaction management
with the TM. For example, when the AP calls tx_begin() the TM informs the participating
RMs of the start of a global transaction. After each request is completed, the TM provides a
return value to the AP reporting back the success or otherwise of the TX call.

For details of the AP-TM interface, see this specification.

(3) TM-RM. The TM-RM interface (the XA interface) lets the TM structure the work of RMs
into global transactions and coordinate completion or recovery. The XA interface is the
bidirectional interface between the TM and RM.

The functions that each RM provides for the TM are called the xa_*() functions. For
example the TM calls xa_start () in each participating RM to start an RM-internal transaction
as part of a new global transaction. Later, the TM may call in sequence xa_end()
xa_prepare() and xa_commit() to coordinate a (successful in this case) two-phase commit
protocol. The functions that the TM provides for each RM are called the ax_*() functions.
For example an RM calls ax_reg() to register dynamically with the TM.

For details of the TM-RM interface, see the referenced XA specification.

(4) TM-CRM. The TM-CRM interface (the XA+ interface) supports global transaction
information flow across TM Domains. In particular TMs can instruct CRMs by use of xa_*()
function calls to suspend or complete transaction branches, and to propagate global
transaction commitment protocols to other transaction branches. CRMs pass information to
TMs in subordinate branches by use of ax_*() function calls. CRMs also use ax_*() function
calls to request the TM to create subordinate transaction branches, to save and retrieve
recovery information, and to inform the TM of the start and end of blocking conditions.

For details of the TM-CRM interface, see the referenced XA+ specification.

The XA+ interface is a superset of the XA interface and supersedes its purpose. Since the
XA+ interface is invisible to the AP, the TM and CRM may use other methods to
interconnect without affecting application portability.

(5) AP-CRM. X/Open provides portable APIs for DTP communication between APs within a
global transaction. The API chosen can significantly influence (and may indeed be
fundamental to) the whole architecture of the application. For this reason, these APIs are
frequently referred to in this specification and elsewhere as communication paradigms . In
practice, each paradigm has unique strengths, so X/Open offers the following popular
paradigms:

• the TxRPC interface (see the referenced TxRPC specification)

• the XATMI interface (see the referenced XATMI specification)

• the CPI-C interface (see the referenced CPI-C specification).

X/Open interfaces, such as the CRM APIs listed above, provide application portability. The
X/Open DTP model imposes few constraints on native CRM APIs.

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 5

X/Open DTP Model Model and Definitions

(6) CRM-OSI TP. This interface (the XAP-TP interface) provides a programming interface
between a CRM and Open Systems Interconnection Distributed Transaction Processing (OSI
TP) services. XAP-TP interfaces with the OSI TP Service and the Presentation Layer of the
seven-layer OSI model. X/Open has defined this interface to support portable
implementations of application-specific OSI services. The use of OSI TP is mandatory for
communication between heterogeneous TM domains. For details of this interface, see the
referenced XAP-TP specification and the OSI TP standards.

6 X/Open CAE Specification

Model and Definitions Definitions

2.2 Definitions
For additional definitions see the referenced DTP guide.

2.2.1 Transaction

A transaction is a complete unit of work. It may comprise many computational tasks, which
may include user interface, data retrieval, and communication. A typical transaction modifies
shared resources. (The OSI TP standard (model) defines transactions more precisely.)

Transactions must also be able to be rolled back . A human user may roll back the transaction in
response to a real-world event, such as a customer decision. A program can elect to roll back a
transaction. For example, account number verification may fail or the account may fail a test of
its balance. Transactions also roll back if a component of the system fails, keeping it from
retrieving, communicating, or storing data. Every DTP software component subject to
transaction control must be able to undo its work in a transaction at any time that it is rolled
back.

When the AP requests commitment and the system determines that a transaction can complete
without failure of any kind, the transaction manager commits the transaction. This means that
changes to shared resources take permanent effect. Either commitment or rollback results in a
consistent state. Completion means either commitment or rollback.

2.2.2 Transaction Properties

Transactions typically exhibit the following properties:

Atomicity which means that the results of the transaction’s execution are either all
committed or all rolled back.

Consistency which means that a completed transaction transforms a shared resource from
one valid state to another valid state.

Isolation which means that changes to shared resources that a transaction effects do not
become visible outside the transaction until the transaction commits.

Durability which means the changes that result from transaction commitment survive
subsequent system or media failures.

These properties are known by their initials as the ACID properties. In the X/Open DTP model,
the TM coordinates Atomicity at global level whilst each RM is responsible for the Atomicity,
Consistency, Isolation and Durability of its resources.

2.2.3 Distributed Transaction Processing

Within the scope of this document, DTP systems are those where work in support of a single
transaction may occur across RMs. This has several implications:

• The system must have a way to refer to a transaction that encompasses all work done
anywhere in the system.

• The decision to commit or roll back a transaction must consider the status of work done
anywhere on behalf of the transaction. The decision must have uniform effect throughout
the DTP system.

Even though an RM may have an X/Open-compliant interface such as Structured Query
Language (SQL), it must also address these two items to be useful in the DTP environment.

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 7

Definitions Model and Definitions

2.2.4 Global Transactions

Every RM in the DTP environment must support transactions as described in Section 2.2.1 on
page 7. Many RMs already structure their work into recoverable units.

In the DTP environment, many RMs may operate in support of the same unit of work. This unit
of work is a global transaction . For example, an AP might request updates to several different
databases. Work occurring anywhere in the system must be committed atomically. Each RM
must let the TM coordinate the RM’s recoverable units of work that are part of a global
transaction.

Commitment of an RM’s internal work depends not only on whether its own operations can
succeed, but also on operations occurring at other RMs, perhaps remotely. If any operation fails
anywhere, every participating RM must roll back all operations it did on behalf of the global
transaction. A given RM is typically unaware of the work that other RMs are doing. A TM
informs each RM of the existence, and directs the completion, of global transactions. An RM is
responsible for mapping its recoverable units of work to the global transaction.

2.2.5 Thread of Control

A thread of control (or a thread) is the entity, with all its context, that is currently in control of a
processor. The context may include locks on shared resources and open files. For portability
reasons, the notion of thread of control must be common among the AP, TM and RM.

The thread concept is central to the TM’s coordination of RMs. APs call RMs to request work,
while TMs call RMs to delineate transactions. The way the RM knows that a given work request
pertains to a given transaction is that the AP and the TM both call it from the same thread of
control . For example, an AP thread calls the TM to declare the start of a global transaction. The
TM records this fact and informs RMs. After the AP regains control, it uses the native interface
of one or more RMs to do work. The RM receives the calls from the AP and TM in the same
thread of control.

8 X/Open CAE Specification

Chapter 3

C-language Interface Overview

This chapter gives an overview of the TX interface. TX is the interface between the AP and the
TM in an X/Open DTP system. Chapter 5 contains reference manual pages for each routine in
alphabetical order. These pages contain a C-language definition of each function. The COBOL
manual pages for the equivalent routines are presented in Chapter 6. This chapter describes the
C-language interface.

AP

RM TM CRM

TX

OSI TP

Figure 3-1 The TX (Transaction Demarcation) Interface

The TX routines are supplied by TMs operating in the DTP environment and are called by APs.
APs demarcate global transactions via the TX interface and perform recoverable operations via
RMs’ native interfaces.

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 9

Index to Services in the TX Interface C-language Interface Overview

3.1 Index to Services in the TX Interface

Name Description Section
Section 3.3 on page 11.tx_begin Begin a global transaction.

Section 3.2.tx_close Close a set of resource managers.
Section 3.3 on page 11.tx_commit Commit a global transaction.
Section 3.7 on page 12.tx_info Return global transaction information.

Section 3.2.tx_open Open a set of resource managers.
Section 3.3 on page 11.tx_rollback Roll back a global transaction.
Section 3.4 on page 11.tx_set_commit_return Set commit_return characteristic.
Section 3.5 on page 12.tx_set_transaction_control Set transaction_control characteristic.
Section 3.6 on page 12.tx_set_transaction_timeout Set transaction_timeout characteristic.

Table 3-1 C-Language TX Functions

3.2 Opening and Closing Resource Managers
An AP must call tx_open() to open all RMs linked with the AP. If tx_open() returns with an
error, all RMs are closed. If tx_open() completes successfully, some or all of the RMs are open.
RMs that are not open return RM-specific errors when accessed by the AP. Only upon successful
completion of the tx_open() call can an AP execute global transactions.

The AP calls tx_close() to close all RMs linked with the AP. For tx_close() to return success, the
AP cannot be part of an active global transaction when tx_close() is called.

The TM opens and closes all RMs that are linked to the application (see the XA specification).
Since RMs differ in their initialisation and termination semantics, the RM vendor must publish
specific information the TM needs to open and close a particular RM.

Allowing the TM to open and close RMs keeps the AP from having to include RM-specific calls
that may hinder portability.

10 X/Open CAE Specification

C-language Interface Overview Beginning and Completing Global Transactions

3.3 Beginning and Completing Global Transactions
An AP calls tx_begin() to mark the beginning of a global transaction. This act places the calling
AP in transaction mode. The function fails if the caller is already in transaction mode, without
affecting the transaction active in the thread of control.

An AP calls tx_commit() to direct the TM to commit its global transaction. The TM coordinates
transaction commitment with all RMs involved in the transaction.

An AP calls tx_rollback () to direct the TM to roll back a global transaction. The TM directs RMs
to undo any changes to recoverable resources that they made within the given global
transaction.

A call to either tx_commit() or tx_rollback () begins a new global transaction when the previous
one is completed, if the AP has selected chained mode. (See Section 3.5 on page 12.)

Many RMs let APs request work outside any global transaction without coordination by an
X/Open TM. This can happen when the AP is not in transaction mode and does work with one
or more RMs.

3.3.1 Heuristic Completion

Under certain unusual failure conditions, an RM may unilaterally commit or roll back changes to
recoverable resources that it made within a global transaction. If this decision does not match
the commit decision the TM makes, a return code on tx_commit() or tx_rollback () notifies the AP
of a mixed heuristic outcome. This means that some parts of the transaction have been
committed and some have been rolled back. In some cases, a TM may not be able to determine
whether an RM’s decision matched the commit decision made by the TM. In such a situation, a
separate return code on tx_commit() or tx_rollback () notifies the AP that some RMs may have
made a heuristic decision (this is known as a heuristic hazard condition). Only heuristic
decisions that are mixed or hazard are reported to the AP as heuristic decisions.

3.4 Setting the Commit Return Point
The function tx_commit() normally returns when the two-phase commit procedure is completed.
An AP can choose to return from tx_commit() at the point when the decision to commit is logged
but prior to completing the second phase. This is known as an early return. An application
designer might employ early return to reduce response time to the user. However, if a
transaction has a heuristic outcome (see Section 3.3.1), a call to tx_commit() that returns early
does not indicate this outcome.

The AP calls tx_set_commit_return() to enable or disable early return from tx_commit(). This call
can be issued whether or not the AP is in transaction mode. The setting remains in effect until
overridden by another call to tx_set_commit_return().

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 11

Chained and Unchained Transactions C-language Interface Overview

3.5 Chained and Unchained Transactions
The TX interface supports chained and unchained modes of transaction execution. By default,
an AP executes in the unchained mode; when an active global transaction is completed, a new
transaction does not begin until the AP calls tx_begin().

In the chained mode, a new transaction starts in the AP thread of control implicitly when the
current transaction completes. That is, when the AP calls tx_commit() or tx_rollback (), the TM
coordinates completion of the current transaction and initiates a new transaction in the calling
thread of control before returning control to the AP. (Certain failure conditions may prevent a
new transaction from starting.)

The AP enables or disables the chained mode by calling tx_set_transaction_control (). Transitions
between the chained and unchained mode affect the behaviour of the next tx_commit() or
tx_rollback () call. The call to tx_set_transaction_control () does not put the AP into or take it out of
a global transaction.

Since tx_close() cannot be called when an AP is in a global transaction, the AP executing in
chained mode must switch to unchained mode and complete the current transaction before
calling tx_close().

3.6 Transaction Timeout
To control the amount of resource spent executing a transaction, an AP may use
tx_set_transaction_timeout () to set the transaction_timeout value. This value specifies the time
period (in seconds) in which the transaction must complete before it becomes susceptible to
transaction timeout. A value of 0 means that the timeout feature is disabled. The initial setting
for each AP is 0.

An AP may call tx_set_transaction_timeout () at any time, but the call affects only transactions the
AP begins subsequently. If an AP calls tx_set_transaction_timeout () in transaction mode, the new
timeout value does not affect the current transaction.

The timeout interval begins and is reset whenever the AP calls tx_begin(). It is also reset by
tx_commit() or tx_rollback () in the chained mode when these functions start a new transaction. If
the AP does not call either tx_commit() or tx_rollback () before the interval expires, the TM
declares a timeout whenever it is possible to do so (under certain circumstances the TM may not
be able to interrupt an operation in progress). A transaction for which the TM has declared a
timeout is rolled back.

Transaction state information returned by tx_info () indicates that a transaction has timed out
and has been marked rollback-only. To complete such a transaction, the AP should call
tx_rollback (). If an AP issues a tx_commit() for a transaction that has been marked rollback only,
the TM rolls back the transaction.

3.7 Information on the Global Transaction
An AP may call tx_info () to obtain the current values of the transaction characteristics affecting
the AP thread of control (see Section 3.8 on page 13), to determine whether the AP is executing in
transaction mode, and to obtain transaction state information.

12 X/Open CAE Specification

C-language Interface Overview Transaction Characteristics

3.8 Transaction Characteristics
The state of an application thread of control includes several characteristics. The AP specifies
these by calling tx_set_*() functions. When the AP sets the value of a characteristic, it remains in
effect until the AP specifies a different value. When the AP obtains the value of a characteristic,
it does not change the value.

The following table is a complete list of the set of characteristics that pertain to each global
transaction:

Characteristic Name Type Section
Section 3.8.1.commit_return COMMIT_RETURN
Section 3.8.2.transaction_control TRANSACTION_CONTROL
Section 3.8.3.transaction_timeout TRANSACTION_TIMEOUT

Table 3-2 Table of Transaction Characteristics

3.8.1 The commit_return Characteristic

The commit_return characteristic determines the stage in the commitment protocol at which the
tx_commit() call returns to the AP. The definition of this characteristic is as follows:

typedef long COMMIT_RETURN;
#define TX_COMMIT_COMPLETED 0
#define TX_COMMIT_DECISION_LOGGED 1

For more information, see Section 3.4 on page 11, tx_commit() on page 23 or
tx_set_commit_return() on page 29.

3.8.2 The transaction_control Characteristic

The transaction_control characteristic determines whether the completion of one transaction
automatically begins a new transaction (called chained mode). The definition of this
characteristic is as follows:

typedef long TRANSACTION_CONTROL;
#define TX_UNCHAINED 0
#define TX_CHAINED 1

For more information, see Section 3.5 on page 12, or tx_set_transaction_control () on page 31.

3.8.3 The transaction_timeout Characteristic

The transaction_timeout value specifies the time period in which the transaction must complete
before becoming susceptible to transaction timeout. The interval is expressed as a number of
seconds. The definition of this characteristic is as follows:

typedef long TRANSACTION_TIMEOUT;

For more information, see Section 3.6 on page 12, or tx_set_transaction_timeout () on page 32.

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 13

C-language Interface Overview

14 X/Open CAE Specification

Chapter 4

The <tx.h> Header

This chapter specifies C-language structure definitions, argument values, and return codes to
which conforming products must adhere. These, plus the function prototypes for the interface
routines defined in the next chapter, are the minimum required contents of the C-language
header file <tx.h>.

Appendix A contains a <tx.h> header file with #define statements suitable for ISO C and
Common Usage C implementations. This chapter contains excerpts from the ISO C code in
<tx.h>. The synopses in Chapter 5 also use ISO C.

4.1 Naming Conventions
The C interface to TX uses certain naming conventions to name its functions, flags, and return
codes. All names that appear in <tx.h> are part of the TX name space. This section describes the
TX naming conventions.

• The names of all TX routines begin with tx_ (for example, tx_begin()).

• The names of return codes and of types and constants used in arguments to TX routines
begin with TX_.

4.2 Transaction Information
The tx_info_t structure is used to return information about the thread state, including the state
of all characteristics (see Section 3.8 on page 13), the thread’s association, if any, to a global
transaction, and transaction state information.

struct tx_info_t {
XID xid;
COMMIT_RETURN when_return;
TRANSACTION_CONTROL transaction_control;
TRANSACTION_TIMEOUT transaction_timeout;
TRANSACTION_STATE transaction_state;

};

typedef struct tx_info_t TXINFO;

The <tx.h> header defines a public structure called an XID to identify a transaction branch. The
XID structure is specified in the C code below in struct xid_t. The AP may call tx_info () to
obtain XID information to identify in which global transaction it is located; for example, to assist
in auditing and debugging. If the AP is not in any global transaction, the TM sets the xid field to
the null XID. The XID contains a format identifier, two length fields, and a data field. The data
field comprises two contiguous components: a global transaction identifier (gtrid) and a branch
qualifier (bqual).

APs may use XIDs for administrative purposes such as auditing and logging, but cannot use
them to affect the TM’s coordination of the global transaction. (None of the TX calls accept an
XID as an input parameter).

The gtrid_length element specifies the number of bytes (1-64) that constitute gtrid , starting at the
first byte of the data element (that is, at data[0]). The bqual_length element specifies the

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 15

Transaction Information The <tx.h> Header

number of bytes (1-64) that constitute bqual , starting at the first byte after gtrid (that is, at
data[gtrid_length]). Neither component in data is null-terminated. The contents of the unused
bytes in data are undefined.

An important attribute of the XID is global uniqueness, based on the exact order of the bits in
the data element of the XID for the lengths specified. The AP should treat each component of
data as an arbitrary collection of octets because, for instance, a component may contain binary
data as well as printable text.

#define XIDDATASIZE 128 /* size in bytes */
struct xid_t {

long formatID; /* format identifier */
long gtrid_length; /* value not to exceed 64 */
long bqual_length; /* value not to exceed 64 */
char data[XIDDATASIZE]; /* may contain binary data */

};
typedef struct xid_t XID;
/*

* A value of -1 in formatID means that the XID is null.
*/

The TRANSACTION_STATE element is specified in the C code below. The AP may call
tx_info () to obtain information regarding the state of the transaction it is in; that is, to determine
whether the transaction is active, has timed-out (and been marked rollback-only), or has been
marked rollback-only (for a reason other than transaction timeout).

typedef long TRANSACTION_STATE;

#define TX_ACTIVE 0
#define TX_TIMEOUT_ROLLBACK_ONLY 1
#define TX_ROLLBACK_ONLY 2

16 X/Open CAE Specification

The <tx.h> Header Return Codes

4.3 Return Codes
Negative return values denote errors. An AP may regard non-negative return codes as denoting
success, but these return codes may convey additional information.

#define TX_NOT_SUPPORTED 1 /* normal execution */
#define TX_OK 0 /* normal execution */
#define TX_OUTSIDE -1 /* application is in an RM local

transaction */
#define TX_ROLLBACK -2 /* transaction was rolled back */
#define TX_MIXED -3 /* transaction was partially committed

and partially rolled back */
#define TX_HAZARD -4 /* transaction may have been partially

committed and partially rolled back*/
#define TX_PROTOCOL_ERROR -5 /* routine invoked in an improper

context */
#define TX_ERROR -6 /* transient error */
#define TX_FAIL -7 /* fatal error */
#define TX_EINVAL -8 /* invalid arguments were given */
#define TX_COMMITTED -9 /* the transaction was heuristically

committed */

#define TX_NO_BEGIN -100 /* transaction committed plus new
transaction could not be started */

#define TX_ROLLBACK_NO_BEGIN (TX_ROLLBACK+TX_NO_BEGIN)
/* transaction rollback plus new

transaction could not be started */
#define TX_MIXED_NO_BEGIN (TX_MIXED+TX_NO_BEGIN)

/* mixed plus transaction could not
be started */

#define TX_HAZARD_NO_BEGIN (TX_HAZARD+TX_NO_BEGIN)
/* hazard plus transaction could not

be started */
#define TX_COMMITTED_NO_BEGIN (TX_COMMITTED+TX_NO_BEGIN)

/* heuristically committed plus
transaction could not be started */

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 17

The <tx.h> Header

18 X/Open CAE Specification

Chapter 5

C Reference Manual Pages

This chapter describes the C interface to the TX service set. Reference manual pages appear, in
alphabetical order, for each service in the TX interface. A TM provides these routines for APs to
call.

The symbolic constants and error names are described in the <tx.h> header (see Chapter 4).

In some descriptions there is a section entitled Optional Set-up; this lists those functions that
might have been called and that govern the operation of the function being described.

In some cases the [TX_FAIL] error description includes the following sentence:

The nature of the error is such that the transaction manager and/or one or more of the
resource managers can no longer perform work on behalf of the application.

This means that any of the following can no longer perform work on behalf of the application:

• transaction manager

• any resource manager

• any combination of resource managers

• any combination of resource managers and the transaction manager.

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 19

tx_begin() C Reference Manual Pages

NAME
tx_begin — begin a global transaction

SYNOPSIS
#include <tx.h>
int tx_begin(void)

DESCRIPTION
The function tx_begin() is used to place the calling thread of control in transaction mode. The
calling thread must first ensure that its linked resource managers have been opened (by means
of tx_open()) before it can start transactions. The function tx_begin() fails (returning
[TX_PROTOCOL_ERROR]) if the caller is already in transaction mode or tx_open() has not been
called.

Once in transaction mode, the calling thread must call tx_commit() or tx_rollback () to complete
its current transaction. There are certain cases related to transaction chaining where tx_begin()
does not need to be called explicitly to start a transaction. See tx_commit() on page 23 and
tx_rollback () on page 27 for details.

Optional Set-up

• tx_set_transaction_timeout ()

RETURN VALUE
Upon successful completion, tx_begin() returns [TX_OK], a non-negative return value.

ERRORS
Under the following conditions, tx_begin() fails and returns one of these negative values:

[TX_OUTSIDE]
The transaction manager is unable to start a global transaction because the calling thread of
control is currently participating in work outside any global transaction with one or more
resource managers. All such work must be completed before a global transaction can be
started. The caller’s state with respect to the local transaction is unchanged.

[TX_PROTOCOL_ERROR]
The function was called in an improper context (for example, the caller is already in
transaction mode). The caller’s state with respect to transaction mode is unchanged.

[TX_ERROR]
Either the transaction manager or one or more of the resource managers encountered a
transient error trying to start a new transaction. When this error is returned, the caller is not
in transaction mode. The exact nature of the error is determined in a product-specific
manner.

[TX_FAIL]
Either the transaction manager or one or more of the resource managers encountered a fatal
error. The nature of the error is such that the transaction manager and/or one or more of
the resource managers can no longer perform work on behalf of the application. When this
error is returned, the caller is not in transaction mode. The exact nature of the error is
determined in a product-specific manner.

APPLICATION USAGE
XA-compliant resource managers must be successfully opened to be included in the global
transaction. (See tx_open() on page 26 for details.)

20 X/Open CAE Specification

C Reference Manual Pages tx_begin()

SEE ALSO
tx_commit(), tx_open(), tx_rollback (), tx_set_transaction_timeout ().

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 21

tx_close() C Reference Manual Pages

NAME
tx_close — close a set of resource managers

SYNOPSIS
#include <tx.h>
int tx_close(void)

DESCRIPTION
The function tx_close() closes a set of resource managers in a portable manner. It invokes a
transaction manager to read information specific to the resource manager in a manner specific to
the transaction manager and pass this information to the resource managers linked to the caller.

The function tx_close() closes all resource managers to which the caller is linked. This function
is used in place of close calls specific to the resource manager and allows an application program
to be free of calls, which may hinder portability. Since resource managers differ in their
termination semantics, the specific information needed to close a particular resource manager
must be published by each resource manager.

The function tx_close() should be called when an application thread of control no longer wishes
to participate in global transactions. The function tx_close() fails (returning
[TX_PROTOCOL_ERROR]) if the caller is in transaction mode. That is, no resource managers
are closed even though some may not be participating in the current transaction.

When tx_close() returns success ([TX_OK]), all resource managers linked to the calling thread
are closed.

RETURN VALUE
Upon successful completion, tx_close() returns [TX_OK], a non-negative return value.

ERRORS
Under the following conditions, tx_close() fails and returns one of these negative values:

[TX_PROTOCOL_ERROR]
The function was called in an improper context (for example, the caller is in transaction
mode). No resource managers are closed.

[TX_ERROR]
Either the transaction manager or one or more of the resource managers encountered a
transient error. The exact nature of the error is determined in a product-specific manner.
All resource managers that could be closed are closed.

[TX_FAIL]
Either the transaction manager or one or more of the resource managers encountered a fatal
error. The nature of the error is such that the transaction manager and/or one or more of
the resource managers can no longer perform work on behalf of the application. The exact
nature of the error is determined in a product-specific manner.

SEE ALSO
tx_open().

22 X/Open CAE Specification

C Reference Manual Pages tx_commit()

NAME
tx_commit — commit a global transaction

SYNOPSIS
#include <tx.h>
int tx_commit(void)

DESCRIPTION
The function tx_commit() is used to commit the work of the transaction active in the caller’s
thread of control.

If the transaction_control characteristic (see tx_set_transaction_control () on page 31) is
TX_UNCHAINED, when tx_commit() returns, the caller is no longer in transaction mode.
However, if the transaction_control characteristic is TX_CHAINED, when tx_commit() returns,
the caller remains in transaction mode on behalf of a new transaction (see the RETURN VALUE
and ERRORS sections below).

Optional Set-up

• tx_set_commit_return()
• tx_set_transaction_control ()
• tx_set_transaction_timeout ()

RETURN VALUE
Upon successful completion, tx_commit() returns [TX_OK], a non-negative return value.

ERRORS
Under the following conditions, tx_commit() fails and returns one of these negative values:

[TX_NO_BEGIN]
The transaction committed successfully; however, a new transaction could not be started
and the caller is no longer in transaction mode. This return value occurs only when the
transaction_control characteristic is TX_CHAINED.

[TX_ROLLBACK]
The transaction could not commit and has been rolled back. In addition, if the
transaction_control characteristic is TX_CHAINED, a new transaction is started.

[TX_ROLLBACK_NO_BEGIN]
The transaction could not commit and has been rolled back. In addition, a new transaction
could not be started and the caller is no longer in transaction mode. This return value can
occur only when the transaction_control characteristic is TX_CHAINED.

[TX_MIXED]
The transaction was partially committed and partially rolled back. In addition, if the
transaction_control characteristic is TX_CHAINED, a new transaction is started.

[TX_MIXED_NO_BEGIN]
The transaction was partially committed and partially rolled back. In addition, a new
transaction could not be started and the caller is no longer in transaction mode. This return
value can occur only when the transaction_control characteristic is TX_CHAINED.

[TX_HAZARD]
Due to a failure, the transaction may have been partially committed and partially rolled
back. In addition, if the transaction_control characteristic is TX_CHAINED, a new
transaction is started.

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 23

tx_commit() C Reference Manual Pages

[TX_HAZARD_NO_BEGIN]
Due to a failure, the transaction may have been partially committed and partially rolled
back. In addition, a new transaction could not be started and the caller is no longer in
transaction mode. This return value can occur only when the transaction_control
characteristic is TX_CHAINED.

[TX_PROTOCOL_ERROR]
The function was called in an improper context (for example, the caller is not in transaction
mode). The caller’s state with respect to the transaction is not changed.

[TX_FAIL]
Either the transaction manager or one or more of the resource managers encountered a fatal
error. The nature of the error is such that the transaction manager and/or one or more of
the resource managers can no longer perform work on behalf of the application. The exact
nature of the error is determined in a product-specific manner. The caller’s state with
respect to the transaction is unknown.

SEE ALSO
tx_begin(), tx_set_commit_return(), tx_set_transaction_control (), tx_set_transaction_timeout ().

24 X/Open CAE Specification

C Reference Manual Pages tx_info()

NAME
tx_info — return global transaction information

SYNOPSIS
#include <tx.h>
int tx_info(TXINFO * info)

DESCRIPTION
The function tx_info () returns global transaction information in the structure pointed to by info.
In addition, this function returns a value indicating whether the caller is currently in transaction
mode or not.

If info is non-null, tx_info () populates a TXINFO structure pointed to by info with global
transaction information. The TXINFO structure contains the following elements:

XID xid;
COMMIT_RETURN when_return;
TRANSACTION_CONTROL transaction_control;
TRANSACTION_TIMEOUT transaction_timeout;
TRANSACTION_STATE transaction_state;

If tx_info () is called in transaction mode, xid is populated with a current transaction branch
identifier and transaction_state contains the state of the current transaction. If the caller is not in
transaction mode, xid is populated with the null XID (see <tx.h> for details). In addition,
regardless of whether the caller is in transaction mode, when_return, transaction_control, and
transaction_timeout contain the current settings of the commit_return and transaction_control
characteristics, and the transaction timeout value in seconds.

The transaction timeout value returned reflects the setting that is used when the next transaction
is started. Thus, it may not reflect the timeout value for the caller’s current global transaction
since calls made to tx_set_transaction_timeout () after the current transaction was begun may
have changed its value.

If info is null, no TXINFO structure is returned.

RETURN VALUE
If the caller is in transaction mode, 1 is returned. If the caller is not in transaction mode, 0 is
returned.

ERRORS
Under the following conditions, tx_info () fails and returns one of these negative values:

[TX_PROTOCOL_ERROR]
The function was called in an improper context (for example, the caller has not yet called
tx_open()).

[TX_FAIL]
The transaction manager encountered a fatal error. The nature of the error is such that the
transaction manager can no longer perform work on behalf of the application. The exact
nature of the error is determined in a product-specific manner.

APPLICATION USAGE
Within the same global transaction, subsequent calls to tx_info () are guaranteed to provide an
XID with the same gtrid component, but not necessarily the same bqual component.

SEE ALSO
tx_open(), tx_set_commit_return(), tx_set_transaction_control (), tx_set_transaction_timeout ().

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 25

tx_open() C Reference Manual Pages

NAME
tx_open — open a set of resource managers

SYNOPSIS
#include <tx.h>
int tx_open(void)

DESCRIPTION
The function tx_open() opens a set of resource managers in a portable manner. It invokes a
transaction manager to read information specific to the resource manager in a manner specific to
the transaction manager and pass this information to the resource managers linked to the caller.

The function tx_open() attempts to open all resource managers that have been linked with the
application. This function is used in place of open calls specific to the resource manager and
allows an application program to be free of calls, which may hinder portability. Since resource
managers differ in their initialisation semantics, the specific information needed to open a
particular resource manager must be published by each resource manager.

If tx_open() returns [TX_ERROR], no resource managers are open. If tx_open() returns [TX_OK],
some or all of the resource managers have been opened. Resource managers that are not open
return errors specific to the resource manager when accessed by the application. The function
tx_open() must successfully return before a thread of control participates in global transactions.

Once tx_open() returns success, subsequent calls to tx_open() (before an intervening call to
tx_close()) are allowed. However, such subsequent calls return success, and the TM does not
attempt to reopen any RMs.

RETURN VALUE
Upon successful completion, tx_open() returns [TX_OK], a non-negative return value.

ERRORS
Under the following conditions, tx_open() fails and returns one of these negative values:

[TX_ERROR]
Either the transaction manager or one or more of the resource managers encountered a
transient error. No resource managers are open. The exact nature of the error is determined
in a product-specific manner.

[TX_FAIL]
Either the transaction manager or one or more of the resource managers encountered a fatal
error. The nature of the error is such that the transaction manager and/or one or more of
the resource managers can no longer perform work on behalf of the application. The exact
nature of the error is determined in a product-specific manner.

SEE ALSO
tx_close().

26 X/Open CAE Specification

C Reference Manual Pages tx_rollback()

NAME
tx_rollback — roll back a global transaction

SYNOPSIS
#include <tx.h>
int tx_rollback(void)

DESCRIPTION
The function tx_rollback () is used to roll back the work of the transaction active in the caller’s
thread of control.

If the transaction_control characteristic (see tx_set_transaction_control () on page 31) is
TX_UNCHAINED, when tx_rollback () returns, the caller is no longer in transaction mode.
However, if the transaction_control characteristic is TX_CHAINED, when tx_rollback () returns,
the caller remains in transaction mode on behalf of a new transaction (see the RETURN VALUE
and ERRORS sections below).

Optional Set-up

• tx_set_transaction_control ()
• tx_set_transaction_timeout ()

RETURN VALUE
Upon successful completion, tx_rollback () returns [TX_OK], a non-negative return value.

ERRORS
Under the following conditions, tx_rollback () fails and returns one of these negative values:

[TX_NO_BEGIN]
The transaction rolled back; however, a new transaction could not be started and the caller
is no longer in transaction mode. This return value occurs only when the transaction_control
characteristic is TX_CHAINED.

[TX_MIXED]
The transaction was partially committed and partially rolled back. In addition, if the
transaction_control characteristic is TX_CHAINED, a new transaction is started.

[TX_MIXED_NO_BEGIN]
The transaction was partially committed and partially rolled back. In addition, a new
transaction could not be started and the caller is no longer in transaction mode. This return
value can occur only when the transaction_control characteristic is TX_CHAINED.

[TX_HAZARD]
Due to a failure, the transaction may have been partially committed and partially rolled
back. In addition, if the transaction_control characteristic is TX_CHAINED, a new
transaction is started.

[TX_HAZARD_NO_BEGIN]
Due to a failure, the transaction may have been partially committed and partially rolled
back. In addition, a new transaction could not be started and the caller is no longer in
transaction mode. This return value can occur only when the transaction_control
characteristic is TX_CHAINED.

[TX_COMMITTED]
The transaction was heuristically committed. In addition, if the transaction_control
characteristic is TX_CHAINED, a new transaction is started.

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 27

tx_rollback() C Reference Manual Pages

[TX_COMMITTED_NO_BEGIN]
The transaction was heuristically committed. In addition, a new transaction could not be
started and the caller is no longer in transaction mode. This return value can occur only
when the transaction_control characteristic is TX_CHAINED.

[TX_PROTOCOL_ERROR]
The function was called in an improper context (for example, the caller is not in transaction
mode).

[TX_FAIL]
Either the transaction manager or one or more of the resource managers encountered a fatal
error. The nature of the error is such that the transaction manager and/or one or more of
the resource managers can no longer perform work on behalf of the application. The exact
nature of the error is determined in a product-specific manner. The caller’s state with
respect to the transaction is unknown.

SEE ALSO
tx_begin(), tx_set_transaction_control (), tx_set_transaction_timeout ().

28 X/Open CAE Specification

C Reference Manual Pages tx_set_commit_return()

NAME
tx_set_commit_return — set commit_return characteristic

SYNOPSIS
#include <tx.h>
int tx_set_commit_return(COMMIT_RETURN when_return)

DESCRIPTION
The function tx_set_commit_return() sets the commit_return characteristic to the value specified in
when_return. This characteristic affects the way tx_commit() behaves with respect to returning
control to its caller. tx_set_commit_return() may be called regardless of whether its caller is in
transaction mode. This setting remains in effect until changed by a subsequent call to
tx_set_commit_return().

The initial setting for this characteristic is implementation dependent.

The valid settings for when_return are as follows:

TX_COMMIT_DECISION_LOGGED
This flag indicates that tx_commit() should return after the commit decision has been logged
by the first phase of the two-phase commit protocol but before the second phase has
completed. This setting allows for faster response to the caller of tx_commit(). However,
there is a risk that a transaction has a heuristic outcome, in which case the caller does not
find out about this situation by means of return codes from tx_commit(). Under normal
conditions, participants that promise to commit during the first phase do so during the
second phase. In certain unusual circumstances however (for example, long-lasting
network or node failures) phase 2 completion may not be possible and heuristic results may
occur. A transaction manager may optionally choose not to support this feature and may
return [TX_NOT_SUPPORTED] to indicate that this value is not supported.

TX_COMMIT_COMPLETED
This flag indicates that tx_commit() should return after the two-phase commit protocol has
finished completely. This setting allows the caller of tx_commit() to see return codes that
indicate that a transaction had or may have had heuristic results. A transaction manager
may optionally choose not to support this feature and may return [TX_NOT_SUPPORTED]
to indicate that this value is not supported.

RETURN VALUE
Upon successful completion, tx_set_commit_return() returns [TX_OK], a non-negative return
value. If the transaction manager does not support the setting of when_return to
TX_COMMIT_COMPLETED or TX_COMMIT_DECISION_LOGGED, it returns
[TX_NOT_SUPPORTED], a non-negative return value, and the commit_return characteristic
remains set to its existing value. The transaction manager must support the setting of
when_return to at least one of TX_COMMIT_COMPLETED or
TX_COMMIT_DECISION_LOGGED.

ERRORS
Under the following conditions, tx_set_commit_return() does not change the setting of the
commit_return characteristic and returns one of these negative values:

[TX_EINVAL]
The argument when_return is not one of TX_COMMIT_DECISION_LOGGED or
TX_COMMIT_COMPLETED.

[TX_PROTOCOL_ERROR]
The function was called in an improper context (for example, the caller has not yet called
tx_open()).

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 29

tx_set_commit_return() C Reference Manual Pages

[TX_FAIL]
The transaction manager encountered a fatal error. The nature of the error is such that the
transaction manager can no longer perform work on behalf of the application. The exact
nature of the error is determined in a product-specific manner.

SEE ALSO
tx_commit(), tx_open(), tx_info ().

30 X/Open CAE Specification

C Reference Manual Pages tx_set_transaction_control()

NAME
tx_set_transaction_control — set transaction_control characteristic

SYNOPSIS
#include <tx.h>
int tx_set_transaction_control(TRANSACTION_CONTROL control)

DESCRIPTION
The function tx_set_transaction_control () sets the transaction_control characteristic to the value
specified in control. This characteristic determines whether tx_commit() and tx_rollback () start a
new transaction before returning to their caller. The function tx_set_transaction_control () may be
called regardless of whether the application program is in transaction mode. This setting
remains in effect until changed by a subsequent call to tx_set_transaction_control ().

The initial setting for this characteristic is TX_UNCHAINED.

The valid settings for control are as follows:

TX_UNCHAINED
This flag indicates that tx_commit() and tx_rollback () should not start a new transaction
before returning to their caller. The caller must issue tx_begin() to start a new transaction.

TX_CHAINED
This flag indicates that tx_commit() and tx_rollback () should start a new transaction before
returning to their caller.

RETURN VALUE
Upon successful completion, tx_set_transaction_control () returns [TX_OK], a non-negative return
value.

ERRORS
Under the following conditions, tx_set_transaction_control () does not change the setting of the
transaction_control characteristic and returns one of these negative values:

[TX_EINVAL]
The argument control is not one of TX_UNCHAINED or TX_CHAINED.

[TX_PROTOCOL_ERROR]
The function was called in an improper context (for example, the caller has not yet called
tx_open()).

[TX_FAIL]
The transaction manager encountered a fatal error. The nature of the error is such that the
transaction manager can no longer perform work on behalf of the application. The exact
nature of the error is determined in a product-specific manner.

SEE ALSO
tx_begin(), tx_commit(), tx_open(), tx_rollback (), tx_info ().

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 31

tx_set_transaction_timeout() C Reference Manual Pages

NAME
tx_set_transaction_timeout — set transaction_timeout characteristic

SYNOPSIS
#include <tx.h>
int tx_set_transaction_timeout(TRANSACTION_TIMEOUT timeout)

DESCRIPTION
The function tx_set_transaction_timeout () sets the transaction_timeout characteristic to the value
specified in timeout . This value specifies the time period in which the transaction must complete
before becoming susceptible to transaction timeout; that is, the interval between the AP calling
tx_begin() and tx_commit() or tx_rollback (). The function tx_set_transaction_timeout () may be
called regardless of whether its caller is in transaction mode or not. If
tx_set_transaction_timeout () is called in transaction mode, the new timeout value does not take
effect until the next transaction.

The initial transaction_timeout value is 0 (no timeout).

The argument timeout specifies the number of seconds allowed before the transaction becomes
susceptible to transaction timeout. It may be set to any value up to the maximum value for a
type long as defined by the system. A timeout value of zero disables the timeout feature.

RETURN VALUE
Upon successful completion, tx_set_transaction_timeout () returns [TX_OK], a non-negative
return value.

ERRORS
Under the following conditions, tx_set_transaction_timeout () does not change the setting of the
transaction_timeout characteristic and returns one of these negative values:

[TX_EINVAL]
The timeout value specified is invalid.

[TX_PROTOCOL_ERROR]
The function was called in an improper context. For example, the caller has not yet called
tx_open().

[TX_FAIL]
The transaction manager encountered an error. The nature of the error is such that the
transaction manager can no longer perform work on behalf of the application. The exact
nature of the error is determined in a product-specific manner.

SEE ALSO
tx_begin(), tx_commit(), tx_open(), tx_rollback (), tx_info ().

32 X/Open CAE Specification

Chapter 6

COBOL Reference Manual Pages

This chapter describes the X/Open COBOL interface to the TX service set. It is basically a one-
to-one mapping of the calls, parameters and return codes, with minor differences due to the
absence of function return in COBOL. This chapter assumes that a COBOL library for TX is
written in C and that it uses the C interface to TX.

Reference manual pages appear, in alphabetical order, for each service in the TX interface. A TM
provides these routines for APs to call.

In some descriptions there is a section entitled Optional Set-up; this lists those functions that
might have been called and that govern the operation of the function being described.

In some cases the [TX-FAIL] error description includes the following sentence:

The nature of the error is such that the transaction manager and/or one or more of the
resource managers can no longer perform work on behalf of the application.

This means that any of the following can no longer perform work on behalf of the application:

• transaction manager

• any resource manager

• any combination of resource managers

• any combination of resource managers and the transaction manager.

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 33

TXINTRO COBOL Reference Manual Pages

NAME
TXINTRO — COBOL data structures

DESCRIPTION

Overview

There is a syntactic description in COBOL for each call of the TX interface.

Each call is described by the following items:

• reference to the COBOL records in the Working-Storage Section needed by that call, by a
COPY statement

• synopsis of the call in the Procedure Division

• description of the call

• list of the return codes.

Data Structures Used by the COBOL TX Interface

Two COBOL records: TX-RETURN-STATUS and TX-INFO-AREA are commonly used by the TX
calls. They are expected to be defined in the Working-Storage Section by specification of COPY
statements.

TX-RETURN-STATUS

Every function described in this chapter takes an instance of this record as a parameter. It is
used to return a value to the caller. This record is expected to be used in the context:

01 TX-RETURN-STATUS COPY TXSTATUS.

TXSTATUS is a COBOL text library defining a signed integer that may be assigned one of the
following values:

05 TX-STATUS PIC S9(9) COMP-5.
88 TX-NOT-SUPPORTED VALUE 1.

* Normal execution
88 TX-OK VALUE 0.

* Normal execution
88 TX-OUTSIDE VALUE -1.

* Application is in an RM local transaction
88 TX-ROLLBACK VALUE -2.

* Transaction was rolled back
88 TX-MIXED VALUE -3.

* Transaction was partially committed and partially rolled back
88 TX-HAZARD VALUE -4.

* Transaction may have been partially committed and partially
* rolled back

88 TX-PROTOCOL-ERROR VALUE -5.
* Routine invoked in an improper context

88 TX-ERROR VALUE -6.
* Transient error

88 TX-FAIL VALUE -7.
* Fatal error

88 TX-EINVAL VALUE -8.
* Invalid arguments were given

34 X/Open CAE Specification

COBOL Reference Manual Pages TXINTRO

88 TX-COMMITTED VALUE -9.
* The transaction was heuristically committed

88 TX-NO-BEGIN VALUE -100.
* Transaction committed plus new transaction could not be started

88 TX-ROLLBACK-NO-BEGIN VALUE -102.
* Transaction rollback plus new transaction could not be started

88 TX-MIXED-NO-BEGIN VALUE -103.
* Mixed plus new transaction could not be started

88 TX-HAZARD-NO-BEGIN VALUE -104.
* Hazard plus new transaction could not be started

88 TX-COMMITTED-NO-BEGIN VALUE -109.
* Heuristically committed plus transaction could not be started

TX-INFO-AREA

This record defines a data structure where the result of the TXINFORM call is stored.

It is expected to be used in the context:

01 TX-INFO-AREA .
COPY TXINFDEF.

TXINFDEF is a COBOL text library defining a record as follows:

* XID record
05 XID-REC.

10 FORMAT-ID PIC S9(9) COMP-5.
* A value of -1 in FORMAT-ID means that the XID is null

10 GTRID-LENGTH PIC S9(9) COMP-5.
10 BRANCH-LENGTH PIC S9(9) COMP-5.
10 XID-DATA PIC X(128).

* Transaction mode settings
05 TRANSACTION-MODE PIC S9(9) COMP-5.

88 TX-NOT-IN-TRAN VALUE 0.
88 TX-IN-TRAN VALUE 1.

* Commit_return settings
05 COMMIT-RETURN PIC S9(9) COMP-5.

88 TX-COMMIT-COMPLETED VALUE 0.
88 TX-COMMIT-DECISION-LOGGED VALUE 1.

* Transaction_control settings
05 TRANSACTION-CONTROL PIC S9(9) COMP-5.

88 TX-UNCHAINED VALUE 0.
88 TX-CHAINED VALUE 1.

* Transaction_timeout value
05 TRANSACTION-TIMEOUT PIC S9(9) COMP-5.

88 NO-TIMEOUT VALUE 0.
* Transaction_state information

05 TRANSACTION-STATE PIC S9(9) COMP-5.
88 TX-ACTIVE VALUE 0.
88 TX-TIMEOUT-ROLLBACK-ONLY VALUE 1.
88 TX-ROLLBACK-ONLY VALUE 2.

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 35

TXBEGIN COBOL Reference Manual Pages

NAME
TXBEGIN — begin a global transaction

SYNOPSIS
DATA DIVISION.

* Include TX definitions.

01 TX-RETURN-STATUS.
COPY TXSTATUS.

PROCEDURE DIVISION.

CALL "TXBEGIN" USING TX-RETURN-STATUS.

DESCRIPTION
TXBEGIN is used to place the calling thread of control in transaction mode. The calling thread
must first ensure that its linked resource managers have been opened (by mean of TXOPEN)
before it can start transactions. TXBEGIN fails (with a TX-RETURN-STATUS value of [TX-
PROTOCOL-ERROR]) if the caller is already in transaction mode or TXOPEN has not been
called.

Once in transaction mode, the calling thread must call TXCOMMIT or TXROLLBACK to
complete its current transaction. There are certain cases related to transaction chaining where
TXBEGIN does not need to be called explicitly to start a transaction. See TXCOMMIT on page
39 and TXROLLBACK on page 44 for details.

Optional Set-up

• TXSETTIMEOUT

RETURN VALUE
Upon successful completion, TXBEGIN sets [TX-OK], a non-negative return value.

ERRORS
Under the following conditions, TXBEGIN fails and sets one of these negative values:

[TX-OUTSIDE]
The transaction manager is unable to start a global transaction because the calling thread of
control is currently participating in work outside any global transaction with one or more
resource managers. All such work must be completed before a global transaction can be
started. The caller’s state with respect to the local transaction is unchanged.

[TX-PROTOCOL-ERROR]
The function was called in an improper context (for example, the caller is already in
transaction mode). The caller’s state with respect to transaction mode is unchanged.

[TX-ERROR]
Either the transaction manager or one or more of the resource managers encountered a
transient error trying to start a new transaction. When this error is returned, the caller is not
in transaction mode. The exact nature of the error is determined in a product-specific
manner.

[TX-FAIL]
Either the transaction manager or one or more of the resource managers encountered a fatal
error. The nature of the error is such that the transaction manager and/or one or more of
the resource managers can no longer perform work on behalf of the application. When this
error is returned, the caller is not in transaction mode. The exact nature of the error is
determined in a product-specific manner.

36 X/Open CAE Specification

COBOL Reference Manual Pages TXBEGIN

APPLICATION USAGE
XA-compliant resource managers must be successfully opened to be included in the global
transaction. (See TXOPEN on page 43 for details.)

SEE ALSO
TXCOMMIT, TXOPEN, TXROLLBACK, TXSETTIMEOUT.

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 37

TXCLOSE COBOL Reference Manual Pages

NAME
TXCLOSE — close a set of resource managers

SYNOPSIS
DATA DIVISION.

* Include TX definitions.

01 TX-RETURN-STATUS.
COPY TXSTATUS.

PROCEDURE DIVISION.

CALL "TXCLOSE" USING TX-RETURN-STATUS.

DESCRIPTION
TXCLOSE closes a set of resource managers in a portable manner. It invokes a transaction
manager to read information specific to the resource manager in a manner specific to the
transaction manager and pass this information to the resource managers linked to the caller.

TXCLOSE closes all resource managers to which the caller is linked. This function is used in
place of close calls specific to the resource manager and allows an application program to be free
of calls, which may hinder portability. Since resource managers differ in their termination
semantics, the specific information needed to close a particular resource manager must be
published by each resource manager.

TXCLOSE should be called when an application thread of control no longer wishes to participate
in global transactions. TXCLOSE fails (returning [TX-PROTOCOL-ERROR]) if the caller is in
transaction mode. That is, no resource managers are closed even though some may not be
participating in the current transaction.

When TXCLOSE sets success ([TX-OK]), all resource managers linked to the calling thread are
closed.

RETURN VALUE
Upon successful completion, TXCLOSE sets [TX-OK], a non-negative value.

ERRORS
Under the following conditions, TXCLOSE fails and sets one of these negative values:

[TX-PROTOCOL-ERROR]
The function was called in an improper context (for example, the caller is in transaction
mode). No resource managers are closed.

[TX-ERROR]
Either the transaction manager or one or more of the resource managers encountered a
transient error. The exact nature of the error is determined in a product-specific manner.
All resource managers that could be closed are closed.

[TX-FAIL]
Either the transaction manager or one or more of the resource managers encountered a fatal
error. The nature of the error is such that the transaction manager and/or one or more of
the resource managers can no longer perform work on behalf of the application. The exact
nature of the error is determined in a product-specific manner.

SEE ALSO
TXOPEN.

38 X/Open CAE Specification

COBOL Reference Manual Pages TXCOMMIT

NAME
TXCOMMIT — commit a global transaction

SYNOPSIS
DATA DIVISION.

* Include TX definitions.

01 TX-RETURN-STATUS.
COPY TXSTATUS.

PROCEDURE DIVISION.

CALL "TXCOMMIT" USING TX-RETURN-STATUS.

DESCRIPTION
TXCOMMIT is used to commit the work of the transaction active in the caller’s thread of control.

If the transaction_control characteristic (see TXSETTRANCTL on page 49) is TX-UNCHAINED,
when TXCOMMIT returns, the caller is no longer in transaction mode. However, if the
transaction_control characteristic is TX-CHAINED, when TXCOMMIT returns, the caller remains
in transaction mode on behalf of a new transaction (see the RETURN VALUE and ERRORS
sections below).

Optional Set-up

• TXSETCOMMITRET
• TXSETTRANCTL
• TXSETTIMEOUT

RETURN VALUE
Upon successful completion, TXCOMMIT sets [TX-OK], a non-negative return value.

ERRORS
Under the following conditions, TXCOMMIT fails and sets one of these negative values:

[TX-NO-BEGIN]
The transaction committed successfully; however, a new transaction could not be started
and the caller is no longer in transaction mode. This return value occurs only when the
transaction_control characteristic is TX-CHAINED.

[TX-ROLLBACK]
The transaction could not commit and has been rolled back. In addition, if the
transaction_control characteristic is TX-CHAINED, a new transaction is started.

[TX-ROLLBACK-NO-BEGIN]
The transaction could not commit and has been rolled back. In addition, a new transaction
could not be started and the caller is no longer in transaction mode. This return value can
occur only when the transaction_control characteristic is TX-CHAINED.

[TX-MIXED]
The transaction was partially committed and partially rolled back. In addition, if the
transaction_control characteristic is TX-CHAINED, a new transaction is started.

[TX-MIXED-NO-BEGIN]
The transaction was partially committed and partially rolled back. In addition, a new
transaction could not be started and the caller is no longer in transaction mode. This return
value can occur only when the transaction_control characteristic is TX-CHAINED.

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 39

TXCOMMIT COBOL Reference Manual Pages

[TX-HAZARD]
Due to a failure, the transaction may have been partially committed and partially rolled
back. In addition, if the transaction_control characteristic is TX-CHAINED, a new
transaction is started.

[TX-HAZARD-NO-BEGIN]
Due to a failure, the transaction may have been partially committed and partially rolled
back. In addition, a new transaction could not be started and the caller is no longer in
transaction mode. This return value can occur only when the transaction_control
characteristic is TX-CHAINED.

[TX-PROTOCOL-ERROR]
The function was called in an improper context (for example, the caller is not in transaction
mode). The caller’s state with respect to transaction mode is not changed.

[TX-FAIL]
Either the transaction manager or one or more of the resource managers encountered a fatal
error. The nature of the error is such that the transaction manager and/or one or more of
the resource managers can no longer perform work on behalf of the application. The exact
nature of the error is determined in a product-specific manner. The caller’s state with
respect to the transaction is unknown.

SEE ALSO
TXBEGIN, TXSETCOMMITRET, TXSETTRANCTL, TXSETTIMEOUT.

40 X/Open CAE Specification

COBOL Reference Manual Pages TXINFORM

NAME
TXINFORM — return global transaction information

SYNOPSIS
DATA DIVISION.

* Include TX definitions.

01 TX-RETURN-STATUS.
COPY TXSTATUS.

*
01 TX-INFO-AREA .

COPY TXINFDEF.

PROCEDURE DIVISION.

CALL "TXINFORM" USING TX-INFO-AREA TX-RETURN-STATUS.

DESCRIPTION
TXINFORM sets global transaction information in TX-INFO-AREA. In addition, this function
sets a value indicating whether the caller is currently in transaction mode or not.

TXINFORM populates the TX-INFO-AREA record with global transaction information. The
contents of the TX-INFO-AREA record are described under TXINTRO on page 34.

If TXINFORM is called in transaction mode, TRANSACTION-MODE is set to TX-IN-TRAN,
XID-REC is populated with a current transaction branch identifier and TRANSACTION-STATE
contains the state of the current transaction. If the caller is not in transaction mode,
TRANSACTION-MODE is set to TX-NOT-IN-TRAN and XID-REC is populated with the null
XID (see TXINTRO on page 34 for details). In addition, regardless of whether the caller is in
transaction mode, COMMIT-RETURN, TRANSACTION-CONTROL, and TRANSACTION-
TIMEOUT contain the current settings of the commit_return and transaction_control
characteristics, and the transaction timeout value in seconds.

The transaction timeout value returned reflects the setting to be used when the next transaction
is started. Thus, it may not reflect the timeout value for the caller’s current global transaction
since calls made to TXSETTIMEOUT after the current transaction was begun may have changed
its value.

RETURN VALUE
Upon successful completion, TXINFORM sets [TX-OK], a non-negative return value.

ERRORS
Under the following conditions, TXINFORM fails and sets one of these negative values:

[TX-PROTOCOL-ERROR]
The function was called in an improper context (for example, the caller has not yet called
TXOPEN).

[TX-FAIL]
The transaction manager encountered a fatal error. The nature of the error is such that the
transaction manager can no longer perform work on behalf of the application. The exact
nature of the error is determined in a product-specific manner.

APPLICATION USAGE
Within the same global transaction, subsequent calls to TXINFORM are guaranteed to provide
an XID with the same gtrid component, but not necessarily the same bqual component.

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 41

TXINFORM COBOL Reference Manual Pages

SEE ALSO
TXOPEN, TXSETCOMMITRET, TXSETTRANCTL, TXSETTIMEOUT.

42 X/Open CAE Specification

COBOL Reference Manual Pages TXOPEN

NAME
TXOPEN — open a set of resource managers

SYNOPSIS
DATA DIVISION.

* Include TX definitions.

01 TX-RETURN-STATUS.
COPY TXSTATUS.

PROCEDURE DIVISION.

CALL "TXOPEN" USING TX-RETURN-STATUS.

DESCRIPTION
TXOPEN opens a set of resource managers in a portable manner. It invokes a transaction
manager to read information specific to the resource manager in a manner specific to the
transaction manager and pass this information to the resource managers linked to the caller.

TXOPEN attempts to open all resource managers that have been linked with the application.
This function is used in place of open calls specific to the resource manager and allows an
application program to be free of calls, which may hinder portability. Since resource managers
differ in their initialisation semantics, the specific information needed to open a particular
resource manager must be published by each resource manager.

If TXOPEN sets [TX-ERROR], no resource managers are open. If TXOPEN sets [TX-OK], some
or all of the resource managers have been opened. Resource managers that are not open return
errors specific to the resource manager when accessed by the application. TXOPEN must
successfully return before a thread of control participates in global transactions.

Once TXOPEN sets success, subsequent calls to TXOPEN (before an intervening call to
TXCLOSE) are allowed. However, such subsequent calls return success, and the TM does not
attempt to reopen any RMs.

RETURN VALUE
Upon successful completion, TXOPEN sets [TX-OK], a non-negative return value.

ERRORS
Under the following conditions, TXOPEN fails and sets one of these negative values:

[TX-ERROR]
Either the transaction manager or one or more of the resource managers encountered a
transient error. No resource managers are open. The exact nature of the error is determined
in a product-specific manner.

[TX-FAIL]
Either the transaction manager or one or more of the resource managers encountered a fatal
error. The nature of the error is such that the transaction manager and/or one or more of
the resource managers can no longer perform work on behalf of the application. The exact
nature of the error is determined in a product-specific manner.

SEE ALSO
TXCLOSE.

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 43

TXROLLBACK COBOL Reference Manual Pages

NAME
TXROLLBACK — roll back a global transaction

SYNOPSIS
DATA DIVISION.

* Include TX definitions.

01 TX-RETURN-STATUS.
COPY TXSTATUS.

PROCEDURE DIVISION.

CALL "TXROLLBACK" USING TX-RETURN-STATUS.

DESCRIPTION
TXROLLBACK is used to roll back the work of the transaction active in the caller’s thread of
control.

If the transaction_control characteristic (see TXSETTRANCTL on page 49) is TX-UNCHAINED,
when TXROLLBACK returns, the caller is no longer in transaction mode. However, if the
transaction_control characteristic is TX-CHAINED, when TXROLLBACK returns, the caller
remains in transaction mode on behalf of a new transaction (see the RETURN VALUE and
ERRORS sections below).

Optional Set-up

• TXSETTRANCTL
• TXSETTIMEOUT

RETURN VALUE
Upon successful completion, TXROLLBACK sets [TX-OK], a non-negative return value.

ERRORS
Under the following conditions, TXROLLBACK fails and sets one of these negative values:

[TX-NO-BEGIN]
The transaction rolled back; however, a new transaction could not be started and the caller
is no longer in transaction mode. This return value occurs only when the transaction_control
characteristic is TX-CHAINED.

[TX-MIXED]
The transaction was partially committed and partially rolled back. In addition, if the
transaction_control characteristic is TX-CHAINED, a new transaction is started.

[TX-MIXED-NO-BEGIN]
The transaction was partially committed and partially rolled back. In addition, a new
transaction could not be started and the caller is no longer in transaction mode. This return
value can occur only when the transaction_control characteristic is TX-CHAINED.

[TX-HAZARD]
Due to a failure, the transaction may have been partially committed and partially rolled
back. In addition, if the transaction_control characteristic is TX-CHAINED, a new
transaction is started.

[TX-HAZARD-NO-BEGIN]
Due to a failure, the transaction may have been partially committed and partially rolled
back. In addition, a new transaction could not be started and the caller is no longer in
transaction mode. This return value can occur only when the transaction_control
characteristic is TX-CHAINED.

44 X/Open CAE Specification

COBOL Reference Manual Pages TXROLLBACK

[TX-COMMITTED]
The transaction was heuristically committed. In addition, if the transaction_control
characteristic is TX-CHAINED, a new transaction is started.

[TX-COMMITTED-NO-BEGIN]
The transaction was heuristically committed. In addition, a new transaction could not be
started and the caller is no longer in transaction mode. This return value can occur only
when the transaction_control characteristic is TX-CHAINED.

[TX-PROTOCOL-ERROR]
The function was called in an improper context (for example, the caller is not in transaction
mode).

[TX-FAIL]
Either the transaction manager or one or more of the resource managers encountered a fatal
error. The nature of the error is such that the transaction manager and/or one or more of
the resource managers can no longer perform work on behalf of the application. The exact
nature of the error is determined in a product-specific manner. The caller’s state with
respect to the transaction is unknown.

SEE ALSO
TXBEGIN, TXSETTRANCTL, TXSETTIMEOUT.

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 45

TXSETCOMMITRET COBOL Reference Manual Pages

NAME
TXSETCOMMITRET — set commit_return characteristic

SYNOPSIS
DATA DIVISION.

* Include TX definitions.

01 TX-RETURN-STATUS.
COPY TXSTATUS.

*
01 TX-INFO-AREA .

COPY TXINFDEF.

PROCEDURE DIVISION.

CALL "TXSETCOMMITRET" USINGTX-INFO-AREA TX-RETURN-STATUS.

DESCRIPTION
TXSETCOMMITRET sets the commit_return characteristic to the value specified in COMMIT-
RETURN. This characteristic affects the way TXCOMMIT behaves with respect to returning
control to its caller. TXSETCOMMITRET may be called regardless of whether its caller is in
transaction mode. This setting remains in effect until changed by a subsequent call to
TXSETCOMMITRET.

The initial setting for this characteristic is implementation dependent.

The valid settings for COMMIT-RETURN are as follows:

TX-COMMIT-DECISION-LOGGED
This flag indicates that TXCOMMIT should return after the commit decision has been
logged by the first phase of the two-phase commit protocol but before the second phase has
completed. This setting allows for faster response to the caller of TXCOMMIT. However,
there is a risk that a transaction has a heuristic outcome, in which case the caller does not
find out about this situation by means of return codes from TXCOMMIT. Under normal
conditions, participants that promise to commit during the first phase do so during the
second phase. In certain unusual circumstances however (for example, long-lasting
network or node failures) phase 2 completion may not be possible and heuristic results may
occur. A transaction manager may optionally choose not to support this feature and may
return [TX-NOT-SUPPORTED] to indicate that this value is not supported.

TX-COMMIT-COMPLETED
This flag indicates that TXCOMMIT should return after the two-phase commit protocol has
finished completely. This setting allows the caller of TXCOMMIT to see return codes that
indicate that a transaction had or may have had heuristic results. A transaction manager
may optionally choose not to support this feature and may return [TX-NOT-SUPPORTED]
to indicate that this value is not supported.

RETURN VALUE
Upon successful completion, TXSETCOMMITRET sets [TX-OK], a non-negative return value. If
the transaction manager does not support the setting of COMMIT-RETURN to TX-COMMIT-
COMPLETED or TX-COMMIT-DECISION-LOGGED, it returns [TX-NOT-SUPPORTED], a
non-negative return value, and the commit_return characteristic remains set to its existing value.
The transaction manager must support the setting of COMMIT-RETURN to at least one of TX-
COMMIT-COMPLETED or TX-COMMIT-DECISION-LOGGED.

46 X/Open CAE Specification

COBOL Reference Manual Pages TXSETCOMMITRET

ERRORS
Under the following conditions, TXSETCOMMITRET does not change the setting of the
commit_return characteristic and sets one of these negative values:

[TX-EINVAL]
COMMIT-RETURN is not one of TX-COMMIT-DECISION-LOGGED or TX-COMMIT-
COMPLETED.

[TX-PROTOCOL-ERROR]
The function was called in an improper context (for example, the caller has not yet called
TXOPEN).

[TX-FAIL]
The transaction manager encountered a fatal error. The nature of the error is such that the
transaction manager can no longer perform work on behalf of the application. The exact
nature of the error is determined in a product-specific manner.

SEE ALSO
TXCOMMIT, TXOPEN, TXINFORM.

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 47

TXSETTIMEOUT COBOL Reference Manual Pages

NAME
TXSETTIMEOUT — set transaction_timeout characteristic

SYNOPSIS
DATA DIVISION.

* Include TX definitions.

01 TX-RETURN-STATUS.
COPY TXSTATUS.

*
01 TX-INFO-AREA .

COPY TXINFDEF.

PROCEDURE DIVISION.

CALL "TXSETTIMEOUT" USING TX-INFO-AREA TX-RETURN-STATUS.

DESCRIPTION
TXSETTIMEOUT sets the transaction_timeout characteristic to the value specified in
TRANSACTION-TIMEOUT. This value specifies the time period in which the transaction
must complete before becoming susceptible to transaction timeout; that is, the interval between
the AP calling TXBEGIN and TXCOMMIT or TXROLLBACK. TXSETTIMEOUT may be called
regardless of whether its caller is in transaction mode or not. If TXSETTIMEOUT is called in
transaction mode, the new timeout value does not take effect until the next transaction.

The initial transaction_timeout value is 0 (no timeout).

TRANSACTION-TIMEOUT specifies the number of seconds allowed before the transaction
becomes susceptible to transaction timeout. It may be set to any value up to the maximum value
for an S9(9) COMP 5 as defined by the system. A TRANSACTION-TIMEOUT value of zero
disables the timeout feature.

RETURN VALUE
Upon successful completion, TXSETTIMEOUT sets [TX-OK], a non-negative return value.

ERRORS
Under the following conditions, TXSETTIMEOUT does not change the setting of the
transaction_timeout characteristic and sets one of these negative values:

[TX-EINVAL]
The timeout value specified is invalid.

[TX-PROTOCOL-ERROR]
The function was called in an improper context. For example, the caller has not yet called
TXOPEN .

[TX-FAIL]
The transaction manager encountered an error. The nature of the error is such that the
transaction manager can no longer perform work on behalf of the application. The exact
nature of the error is determined in a product-specific manner.

SEE ALSO
TXBEGIN, TXCOMMIT, TXOPEN, TXROLLBACK, TXINFORM.

48 X/Open CAE Specification

COBOL Reference Manual Pages TXSETTRANCTL

NAME
TXSETTRANCTL — set transaction_control characteristic

SYNOPSIS
DATA DIVISION.

* Include TX definitions.

01 TX-RETURN-STATUS.
COPY TXSTATUS.

*
01 TX-INFO-AREA .

COPY TXINFDEF.

PROCEDURE DIVISION.

CALL "TXSETTRANCTL" USING TX-INFO-AREA TX-RETURN-STATUS.

DESCRIPTION
TXSETTRANCTL sets the transaction_control characteristic to the value specified in
TRANSACTION-CONTROL. This characteristic determines whether TXCOMMIT and
TXROLLBACK start a new transaction before returning to their caller. TXSETTRANCTL may be
called regardless of whether the application program is in transaction mode. This setting
remains in effect until changed by a subsequent call to TXSETTRANCTL.

The initial setting for this characteristic is TX-UNCHAINED.

The valid settings for TRANSACTION-CONTROL are as follows:

TX-UNCHAINED
This flag indicates that TXCOMMIT and TXROLLBACK should not start a new transaction
before returning to their caller. The caller must issue TXBEGIN to start a new transaction.

TX-CHAINED
This flag indicates that TXCOMMIT and TXROLLBACK should start a new transaction
before returning to their caller.

RETURN VALUE
Upon successful completion, TXSETTRANCTL sets [TX-OK], a non-negative return value.

ERRORS
Under the following conditions, TXSETTRANCTL does not change the setting of the
transaction_control characteristic and sets one of these negative values:

[TX-EINVAL]
TRANSACTION-CONTROL is not one of TX-UNCHAINED or TX-CHAINED.

[TX-PROTOCOL-ERROR]
The function was called in an improper context (for example, the caller has not yet called
TXOPEN).

[TX-FAIL]
The transaction manager encountered a fatal error. The nature of the error is such that the
transaction manager can no longer perform work on behalf of the application. The exact
nature of the error is determined in a product-specific manner.

SEE ALSO
TXBEGIN, TXCOMMIT, TXOPEN, TXROLLBACK, TXINFORM.

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 49

COBOL Reference Manual Pages

50 X/Open CAE Specification

Chapter 7

State Table

This chapter contains a state table that shows legal calling sequences for the C-language TX
routines for the transaction initiator.

The TM ensures that each thread of control calls the TX routines in a legal sequence. When an
illegal state transition is attempted (that is, a call from a state with a blank transition entry), the
called function returns [TX_PROTOCOL_ERROR]. The legal states and transitions for the TX
primitives for the transaction initiator are shown in the table below. Calls that return failure do
not make state transitions, except where described by specific state table entries.

The states are defined below:

S0 No RMs have been opened or initialised. An application thread of control cannot start a
global transaction until it has successfully opened its RMs via tx_open().

S1 The thread has opened its RMs but is not in a transaction. Its transaction_control
characteristic is TX_UNCHAINED.

S2 The thread has opened its RMs but is not in a transaction. Its transaction_control
characteristic is TX_CHAINED.

S3 The thread has opened its RMs and is in a transaction. Its transaction_control characteristic is
TX_UNCHAINED.

S4 The thread has opened its RMs and is in a transaction. Its transaction_control characteristic is
TX_CHAINED.

The valid states for each function are as shown in Table 7-1 on page 52.

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 51

State Table

States
Function

S0 S1 S2 S3 S4

tx_begin() S3 S4
tx_close() S0 S0 S0
tx_commit() → TX_SET1 S1 S4
tx_commit() → TX_SET2 S2
tx_info () S1 S2 S3 S4
tx_open() S1 S1 S2 S3 S4
tx_rollback () → TX_SET1 S1 S4
tx_rollback () → TX_SET2 S2
tx_set_commit_return() S1 S2 S3 S4
tx_set_transaction_control () S2 S2 S4 S4

control = TX_CHAINED
tx_set_transaction_control () S1 S1 S3 S3

control = TX_UNCHAINED
tx_set_transaction_timeout () S1 S2 S3 S4

Table 7-1 C-language State Table

Notes:

1. TX_SET1 denotes any of:

[TX_OK]
[TX_ROLLBACK]
[TX_MIXED]
[TX_HAZARD]
[TX_COMMITTED]

([TX_ROLLBACK] is not returned by tx_rollback () and [TX_COMMITTED] is not
returned by tx_commit()).

2. TX_SET2 denotes any of:

[TX_NO_BEGIN]
[TX_ROLLBACK_NO_BEGIN]
[TX_MIXED_NO_BEGIN]
[TX_HAZARD_NO_BEGIN]
[TX_COMMITTED_NO_BEGIN]

([TX_ROLLBACK_NO_BEGIN] is not returned by tx_rollback () and
[TX_COMMITTED_NO_BEGIN] is not returned by tx_commit()).

3. If [TX_FAIL] is returned on any call, the application thread of control is in an
undefined state with respect to the above table.

4. When tx_info () returns one of:

[TX_ROLLBACK_ONLY]
[TX_TIMEOUT_ROLLBACK_ONLY]

in the transaction state information, the transaction is marked rollback-only and is
rolled back whether the application program calls tx_commit() or tx_rollback ().

52 X/Open CAE Specification

Chapter 8

Implementation Requirements

This chapter summarises the implications on implementors of this specification. It also
identifies features of this specification that implementors of TMs, or application writers, can
regard as optional.

These requirements are designed to facilitate portability — specifically, the ability to move an
application program to a different DTP system without modifying the source code. It is
anticipated that DTP products will be delivered as object modules and that the administrator
will control the mix and operation of components at a particular site by:

• relinking object modules

• supplying text strings to the software components (or executing a vendor-supplied
procedure that incorporates suitable text strings).

For additional implementation requirements, see the XA specification.

8.1 Application Program Requirements
Any AP in a DTP system must use a TM and delegate to it responsibility to control and
coordinate each global transaction.

The AP is not involved in either the commitment protocol or the recovery process. An AP
thread can have only one global transaction active at a time.

The AP may ask for work to be done by calling one or more RMs. It uses the RM’s native
interface exactly as it would if operating without a TM, except that it calls the TM to define
global transactions and to open and close RMs via the TX interface specified herein.

8.2 Resource Manager Requirements
The X/Open DTP model affects only RMs operating in the DTP environment. The model puts
minimal constraints on the native interface by which APs request work from the RM.

Transaction demarcation with a particular RM is coordinated by the associated TM, using the
XA interface (see the XA specification, which specifies information that an RM product must
publish).

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 53

Transaction Manager Requirements Implementation Requirements

8.3 Transaction Manager Requirements
• Service interfaces

TMs must support interaction with RMs using the XA interface.

TMs must implement certain calls in the TX interface by making XA calls to each relevant
RM, as specified in Appendix B. When one or more RMs report errors on those XA calls, the
TM must convey appropriate error reports to the AP, as specified in that appendix.

• Public information

TMs must publish their behaviour with respect to setting of the commit_return characteristic
(specifically the default value and which settings are supported).

See also the XA specification for details of the publication requirements for TMs.

54 X/Open CAE Specification

Appendix A

<tx.h> C Header

This appendix specifies a <tx.h> C header file in both ISO C and Common Usage C. Any <tx.h>
file used must contain at least the components of the file shown below, except for the comments.

/*
* Start of tx.h header
*
* Define a symbol to prevent multiple inclusions of this header file
*/

#ifndef TX_H
#define TX_H

#define TX_H_VERSION 0 /* current version of this header file */

/*
* Transaction identifier
*/

#define XIDDATASIZE 128 /* size in bytes */
struct xid_t {

long formatID; /* format identifier */
long gtrid_length; /* value from 1 through 64 */
long bqual_length; /* value from 1 through 64 */
char data[XIDDATASIZE];

};
typedef struct xid_t XID;
/*

* A value of -1 in formatID means that the XID is null.
*/

/*
* Definitions for tx_*() routines
*/

/* commit return values */
typedef long COMMIT_RETURN;
#define TX_COMMIT_COMPLETED 0
#define TX_COMMIT_DECISION_LOGGED 1

/* transaction control values */
typedef long TRANSACTION_CONTROL;
#define TX_UNCHAINED 0
#define TX_CHAINED 1

/* type of transaction timeouts */
typedef long TRANSACTION_TIMEOUT;

/* transaction state values */
typedef long TRANSACTION_STATE;

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 55

<tx.h> C Header

#define TX_ACTIVE 0
#define TX_TIMEOUT_ROLLBACK_ONLY 1
#define TX_ROLLBACK_ONLY 2

/* structure populated by tx_info() */
struct tx_info_t {

XID xid;
COMMIT_RETURN when_return;
TRANSACTION_CONTROL transaction_control;
TRANSACTION_TIMEOUT transaction_timeout;
TRANSACTION_STATE transaction_state;

};
typedef struct tx_info_t TXINFO;

/*
* Declarations of routines by which Applications call TMs:
*/

#ifdef __STDC__
extern int tx_begin(void);
extern int tx_close(void);
extern int tx_commit(void);
extern int tx_info(TXINFO *);
extern int tx_open(void);
extern int tx_rollback(void);
extern int tx_set_commit_return(COMMIT_RETURN);
extern int tx_set_transaction_control(TRANSACTION_CONTROL);
extern int tx_set_transaction_timeout(TRANSACTION_TIMEOUT);
#else /* ifndef __STDC__ */
extern int tx_begin();
extern int tx_close();
extern int tx_commit();
extern int tx_info();
extern int tx_open();
extern int tx_rollback();
extern int tx_set_commit_return();
extern int tx_set_transaction_control();
extern int tx_set_transaction_timeout();
#endif /* ifndef __STDC__ */

/*
* tx_*() return codes (transaction manager reports to application)
*/

#define TX_NOT_SUPPORTED 1 /* option not supported */
#define TX_OK 0 /* normal execution */
#define TX_OUTSIDE -1 /* application is in an RM local

transaction */
#define TX_ROLLBACK -2 /* transaction was rolled back */
#define TX_MIXED -3 /* transaction was partially committed

and partially rolled back */

56 X/Open CAE Specification

<tx.h> C Header

#define TX_HAZARD -4 /* transaction may have been partially
committed and partially rolled back */

#define TX_PROTOCOL_ERROR -5 /* routine invoked in an improper
context */

#define TX_ERROR -6 /* transient error */
#define TX_FAIL -7 /* fatal error */
#define TX_EINVAL -8 /* invalid arguments were given */
#define TX_COMMITTED -9 /* transaction has heuristically

committed */
#define TX_NO_BEGIN -100 /* transaction committed plus new

transaction could not be started */
#define TX_ROLLBACK_NO_BEGIN (TX_ROLLBACK+TX_NO_BEGIN)

/* transaction rollback plus new
transaction could not be started */

#define TX_MIXED_NO_BEGIN (TX_MIXED+TX_NO_BEGIN)
/* mixed plus new transaction could not

be started */
#define TX_HAZARD_NO_BEGIN (TX_HAZARD+TX_NO_BEGIN)

/* hazard plus new transaction could
not be started */

#define TX_COMMITTED_NO_BEGIN (TX_COMMITTED+TX_NO_BEGIN)
/* heuristically committed plus new

transaction could not be started */

#endif /* ifndef TX_H */

/*
* End of tx.h header
*/

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 57

<tx.h> C Header

58 X/Open CAE Specification

Appendix B

Suggested Mappings to the XA Interface

This appendix suggests mappings between the TX interface and the XA interface for the C-
language function calls and C-language return codes.

The XA interface is sufficiently rich to permit alternative mappings in some cases. These
alternatives are not shown in this appendix. Therefore, the tables shown in this appendix are not
state tables.

B.1 Overview
The TX interface in this document specifies the calls an AP makes to the TM. X/Open-compliant
TMs use the XA interface published in the XA specification to instruct all relevant RMs linked
with the AP to carry out the functions expressed by the semantics of the TX interface. Most TX
calls map to XA calls, and XA return codes map to TX return codes. When an AP thread of
control issues such a TX call, the TM issues the associated call or calls in the XA interface for
each relevant RM as suggested below.

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 59

Function Call Mappings Suggested Mappings to the XA Interface

B.2 Function Call Mappings
TX calls that result in xa_* calls could result in calls to xa_complete (). The TM has the option of
using the asynchronous calling mode of XA, if the RM supports it. However, the asynchronous
XA operation and the call or calls to xa_complete () that detect the operation’s completion must
occur wholly within the single TX call.

Some TX calls (for example, tx_open()) could result in calls to xa_recover(), xa_commit(),
xa_rollback (), and xa_forget (), if the TM uses the TX call as an opportunity to recover or advance
transaction work performed previously.

tx_open()
→ xa_open()

 This call opens all RMs linked with the AP. The TM calls xa_open() at all RMs that are
linked with the thread only for the first call to tx_open() in that thread of control, or for the
first call to tx_open() after a call to tx_close().

An RM that has received an xa_open() call in a given thread of control and responded with
[XA_OK] may participate in global transactions in that thread.

tx_begin()
→ xa_start ()

 This call associates the AP thread of control with a global transaction. The TM generates an
XID and calls xa_start () at all open RMs that are linked with the thread. However, the TM
does not call xa_start () for dynamically-registering RMs; they register with the TM by
calling ax_reg() only if the AP calls them through the native interface to request actual
work.

An RM that has received an xa_start () call, or made an ax_reg() call, in a given thread of
control for a given global transaction is said to be associated with the global transaction.

tx_commit()
→ xa_end(), xa_prepare(), xa_commit()
→ xa_rollback () if any RM vetos the transaction

 The AP calls tx_commit() to make the effects of the transaction permanent. The TM, in turn,
executes the two-phase commit protocol. The TM first calls xa_end() for each involved RM,
from the AP’s thread of control, to dissociate the thread from the global transaction. Then
the TM coordinates the transaction commitment protocol as follows:

• Phase 1: The TM calls xa_prepare() for each RM that was associated with the global
transaction (as defined above under tx_begin()). The XA specification describes
techniques, such as an asynchronous calling mode, by which the TM may be able to
schedule concurrent activities efficiently at different RMs.

• Phase 2: If all such RMs return success from xa_prepare(), the TM stably records a
decision to commit the transaction and then calls xa_commit() for each such RM. If any
RM returns error during Phase 1, then the TM calls xa_rollback () for each such RM that
has not already rolled back its work, and tx_commit() returns to the AP a rollback
indication.

The XA specification gives two optimisations in this procedure:

1. During Phase 1, any RM may report that the AP did not ask it to update shared
resources, which eliminates the Phase 2 call to that RM.

2. If the TM has dealt with only one subordinate RM in the global transaction, it can omit
Phase 1.

60 X/Open CAE Specification

Suggested Mappings to the XA Interface Function Call Mappings

→ xa_start () if the AP’s transaction_control characteristic is set to TX_CHAINED.

 See the description of xa_start () under tx_begin() above for details.

→ xa_forget () if any RM reports heuristics

 If an RM informs the TM of a heuristic decision or heuristic hazard in response to
tx_commit() or xa_rollback (), the TM must call xa_forget () to authorise the RM to discard
knowledge of the global transaction. The TM can make this call before it returns from
tx_commit() or arrange for the call to be made later.

tx_rollback ()
→ xa_end()
→ xa_rollback ()

 The AP calls tx_rollback () to roll back the global transaction. As with tx_commit(), the TM
first calls xa_end() for each RM to dissociate the AP thread of control from the transaction.
Then the TM calls xa_rollback () for every RM that has not already rolled back its work.

→ xa_start () if the AP’s transaction_control characteristic is set to TX_CHAINED.

 See the description of xa_start () under tx_begin() above for details.

→ xa_forget () if any RM reports heuristics

 If an RM informs the TM of a heuristic decision or heuristic hazard in response to
xa_rollback (), the TM must call xa_forget () to authorise the RM to discard knowledge of the
global transaction.

tx_close()
→ xa_close ()

 This call closes all RMs linked with the AP. The TM calls xa_close () at all opened RMs that
are linked with the thread.

An RM that has received an xa_close () call in a given thread of control may no longer
participate in global transactions in that thread.

tx_info ()
→ No corresponding xa_* calls.

tx_set_commit_return()
→ No corresponding xa_* calls.

tx_set_transaction_control ()
→ No corresponding xa_* calls.

tx_set_transaction_timeout ()
→ No corresponding xa_* calls.

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 61

General Rules for Mapping of Return Codes Suggested Mappings to the XA Interface

B.3 General Rules for Mapping of Return Codes
These rules are implicit in all of the mapping tables that follow. Section B.4 on page 64 describes
mappings from XA error codes to TX error codes in the case where only one RM is involved. The
case where several RMs are involved and return different results is covered in Section B.5 on
page 67.

Reporting Success

The RM return code [XA_OK] maps directly to the TM return code [TX_OK], and is not included
in the tables. However, the notion of success depends on the context of the call:

• If an AP requests tx_rollback () and all RMs roll back their work, tx_rollback () reports success
despite any RM failures or heuristic decisions that may have occurred.

• Conversely, if an AP requests tx_commit() and the TM determines that it must call
xa_rollback () at some RMs, then despite the fact that these rollbacks succeeded, the TM must
still return [TX_ROLLBACK] to notify the AP that the requested commitment failed.

• The tx_commit() and tx_rollback () calls typically cause the TM to issue a series of XA calls.
Success at any one of these calls does not constitute success of the TX call. This is described
in more detail later in this appendix.

Origin of Error

The return code [TX_ERROR] reports that an RM failed temporarily. The exact nature of the
error may be reported in an RM-specific manner.

The return code [TX_FAIL] reports that the TM or an RM failed and the TM should not be called
further.

In a variety of synchronisation failures between the RM and TM, it is important and not always
clear which component experienced the failure. A TM should return [TX_FAIL] only when it
can no longer perform work on behalf of the AP, otherwise it should return [TX_ERROR].

Heuristic Outcomes

As described in Section 3.3.1 on page 11, heuristic outcomes are cases where RMs make
autonomous commitment decisions (see also the referenced DTP guide). Heuristic outcomes
that match the outcome the AP requested (namely, XA_HEURCOM during a call to tx_commit(),
and XA_HEURRB during a call to tx_rollback ()) are not reported to the AP as heuristic outcomes.

Invalid Arguments

The return code [XAER_INVAL] in the XA interface lets RMs report to the TM that the TM
supplied an invalid argument. This never reflects an application coding error, because there is
no TX routine where the AP gives the TM an argument to pass directly to the RM.
[XAER_INVAL] reflects a synchronisation failure between RM and TM (see Origin of Error).

62 X/Open CAE Specification

Suggested Mappings to the XA Interface General Rules for Mapping of Return Codes

Protocol Violations

The return code [XAER_PROTO] in the XA interface lets RMs report to the TM that an XA
routine was called in an improper context. TMs are required to enforce proper sequencing of
calls to TX routines. When an improperly-coded AP causes a protocol error, the TM returns
[TX_PROTOCOL_ERROR], for example, on the second consecutive call to tx_begin(). Therefore,
[XAER_PROTO] reflects a synchronisation failure between an RM and a TM (see Origin of Error
on page 62).

Too Many Asynchronous Operations

An asynchronous calling mode in the XA interface lets the TM efficiently schedule concurrent
activities at different RMs. Support for the calling mode depends on the RM. The return code
[XAER_ASYNC] informs the TM that it has exceeded the RM’s limit for outstanding
asynchronous requests (which may be 0). The TM adapts to this case in a product-specific
manner. The return code [XAER_ASYNC] is not included in the following tables.

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 63

Suggested Mapping of Return Codes: Single RM Suggested Mappings to the XA Interface

B.4 Suggested Mapping of Return Codes: Single RM
This section suggests a mapping of the return codes for a single RM where the TM employs a
one-phase commit optimisation.

Return Codes from xa_open()

The TM opens the RM when the AP calls tx_open().

xa_open() tx_open()
[XAER_RMERR] → [TX_ERROR]
[XAER_INVAL] → [TX_FAIL]
[XAER_PROTO] → [TX_FAIL]

Return Codes from xa_close()

The TM closes the RM when the AP calls tx_close().

xa_close() tx_close()
[XAER_RMERR] → [TX_ERROR]
[XAER_INVAL] → [TX_FAIL]
[XAER_PROTO] → [TX_FAIL]

Return Codes from xa_start()

The TM starts a new global transaction at the RM when the AP calls tx_begin(), or when the AP
calls tx_commit() or tx_rollback () and the transaction_control characteristic is set to
TX_CHAINED.

xa_start() tx_begin() tx_commit() tx_rollback()
[XA_RETRY] → 1 1 1

[XA_RB*] → 2 2 2

[XAER_NOTA] → 2 2 2

[XAER_RMERR] → [TX_ERROR] [TX_*_NO_BEGIN] 4 [TX_*_NO_BEGIN] 5

[XAER_DUPID] → [TX_ERROR] 3 [TX_*_NO_BEGIN] 3,4 [TX_*_NO_BEGIN] 3,5

[XAER_INVAL] → [TX_FAIL] [TX_*_NO_BEGIN] 4 [TX_*_NO_BEGIN] 5

[XAER_PROTO] → [TX_ERROR] 3 [TX_*_NO_BEGIN] 3,4 [TX_*_NO_BEGIN] 3,5

[XAER_RMFAIL] → [TX_FAIL] [TX_*_NO_BEGIN] 4 [TX_*_NO_BEGIN] 5

[XAER_OUTSIDE] → [TX_OUTSIDE] 6 6

Notes:

1. The [XA_RETRY] code tells the TM to reissue the call. The result the TM returns
to the AP depends on the ultimate outcome of the reissued call. If the RM keeps
returning [XA_RETRY], the TM may return [TX_ERROR].

2. These return codes indicate that the global transaction has been marked rollback-
only. An RM would never return them when the TM calls xa_start () to start a new
global transaction. An RM only returns these codes when a thread of control uses
the xa_start (TMRESUME) or xa_start (TMJOIN) forms to resume or join an
existing global transaction that the RM has marked rollback-only. This situation
is not applicable here.

64 X/Open CAE Specification

Suggested Mappings to the XA Interface Suggested Mapping of Return Codes: Single RM

3. Receipt of [XAER_DUPID] or [XAER_PROTO] is a strong indication of a failure
between the TM and the RM. The TM may try to resynchronise with the RM by
issuing xa_end() and xa_rollback (). If this is unsuccessful, [TX_FAIL] may be
returned to the AP. See Origin of Error on page 62.

4. May be any one of [TX_NO_BEGIN], [TX_ROLLBACK_NO_BEGIN].

5. May be any one of [TX_NO_BEGIN], [TX_COMMITTED_NO_BEGIN].

6. This can only occur if the AP is participating in a local transaction. Since an AP
cannot at the same time be within a global and a local transaction, this situation is
not applicable here.

Return Codes from xa_end()

This section describes return codes from xa_end() when the TM calls it during tx_commit() or
tx_rollback ().

xa_end() tx_commit() or tx_rollback()
[XA_NOMIGRATE] → 1

[XA_RB*] → 2

[XAER_NOTA] → 2

[XAER_RMERR] → 2

[XAER_RMFAIL] → [TX_FAIL]
[XAER_INVAL] → [TX_FAIL]
[XAER_PROTO] → [TX_FAIL] 3

Notes:

1. The RM returns [XA_NOMIGRATE] only when the TM uses the form
xa_end(TMSUSPEND), which is not applicable here.

2. These return codes indicate to the TM that the RM in question has requested the
TM to roll back all work on behalf of a global transaction. If the AP called
tx_commit(), it receives [TX_ROLLBACK]; if the AP called tx_rollback (), it receives
[TX_OK].

3. Receipt of [XAER_PROTO] is a strong indication of a failure between the TM and
the RM. The TM may try to resynchronise with the RM by issuing xa_rollback ().
If this is unsuccessful, [TX_FAIL] may be returned to the AP. See Origin of Error
on page 62.

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 65

Suggested Mapping of Return Codes: Single RM Suggested Mappings to the XA Interface

Return Codes from xa_commit() and xa_rollback()

This section describes return codes from xa_commit() and xa_rollback () when called by the TM
during tx_commit() or tx_rollback ().

xa_commit() or tx_commit() or
xa_rollback() tx_rollback()

[XA_HEURCOM] → 1

[XA_HEURRB] → 1

[XA_HEURHAZ] → [TX_HAZARD]
[XA_HEURMIX] → [TX_MIXED]
[XA_RB*] → 2

[XAER_RMERR] → 2

[XAER_NOTA] → 2

[XAER_RMFAIL] → [TX_FAIL]
[XAER_INVAL] → [TX_FAIL]
[XAER_PROTO] → [TX_FAIL]
[XA_RETRY] → 3

Notes:

1. If a heuristic outcome matches the outcome the AP requested, the TM reports
success ([TX_OK]) to the AP. If the outcome is not what the AP requested, the
TM reports that disposition to the AP: tx_commit() returns [TX_ROLLBACK];
tx_rollback () returns [TX_COMMITTED].

2. These return codes indicate to the TM that the RM in question rolled back work it
did on behalf of a global transaction. If the AP called tx_commit(), it receives
[TX_ROLLBACK]; if the AP called tx_rollback (), it receives [TX_OK].

3. The XA_RETRY code tells the TM to reissue the call. The result the TM returns to
the AP depends on the ultimate outcome of the reissued call. If the RM keeps
returning XA_RETRY, the TM may return [TX_ERROR].

66 X/Open CAE Specification

Suggested Mappings to the XA Interface Suggested Mapping of Return Codes: Multiple RMs

B.5 Suggested Mapping of Return Codes: Multiple RMs
The TM considers return status from all associated RMs to generate a return code for the AP. In
general, the TM’s return code reflects the most severe error an RM reported to it. The suggested
hierarchy of error severity is:

TM or RM failure: [TX_FAIL]
Mixed heuristic outcome: [TX_MIXED]
Heuristic hazard: [TX_HAZARD]
Possibly-recoverable RM failure: [TX_ERROR]
Warnings: [TX_OUTSIDE], [TX_ROLLBACK], [TX_COMMITTED]
Success: [TX_OK]

The [TX_EINVAL] and [TX_PROTOCOL_ERROR] codes do not appear in the preceding list
because they involve only the interface between AP and TM. The TM generates these results
without calling any RMs. For [TX_MIXED], [TX_HAZARD], and [TX_FAIL], more information
about the exact nature of the error shall be obtained in a vendor-specified manner.

The following tables describe only those TX calls for which mappings cannot be derived from
the hierarchy of error severity.

Return Codes from xa_open()

The TM opens all RMs when the AP calls tx_open().

xa_open() tx_open()
[XAER_RMERR] → [TX_ERROR] 1

[XAER_INVAL] → [TX_FAIL] 1

[XAER_PROTO] → [TX_FAIL] 1

Notes:

1. The TM is free to return [TX_OK] in the case where one or more of the RMs
returns [XA_OK].

Return Codes from xa_prepare()

The TM prepares the global transaction at the RM when the AP calls tx_commit().

xa_prepare() tx_commit()
[XA_RDONLY] → [TX_OK] 1

[XA_RB*] → [TX_ROLLBACK] 2

[XAER_NOTA] → [TX_ROLLBACK] 2

[XAER_RMERR] → [TX_ROLLBACK] 3

[XAER_RMFAIL] → [TX_FAIL]
[XAER_INVAL] → [TX_FAIL]
[XAER_PROTO] → [TX_ROLLBACK] 3

Notes:

1. The XA_RDONLY result ends that RM’s participation in the commitment
protocol. If all RMs return XA_RDONLY, the TM returns [TX_OK]. Otherwise,
the TM returns a code based on the full commitment protocol at other RMs.

2. These return codes indicate to the TM that the RM in question rolled back work it
did on behalf of a global transaction.

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 67

Suggested Mapping of Return Codes: Multiple RMs Suggested Mappings to the XA Interface

3. A return code of [XAER_RMERR] or [XAER_PROTO] from xa_prepare() makes no
assertion about whether the RM successfully prepared its work. The TM should
call all RMs with xa_rollback () to attempt to roll back the transaction. If this is
unsuccessful, the TM could return [TX_HAZARD] or [TX_FAIL].

Combined Outcomes During Commit and Rollback

When two RMs involved in the transaction report different outcomes during a call to
tx_commit() or tx_rollback (), the TM maps the XA result from each RM to a potential TX result
using the table below, and then returns the most severe TX result to the AP (see the start of
Section B.5 on page 67 for the suggested severity of TX errors). Information in the preceding
sections, concerning the treatment of individual XA results from a single RM, remains relevant
here.

When there are three or more RMs, the TX return code is given by the most severe error derived
from the table.

The following table describes combined outcomes from xa_commit() when issued during the
second phase of a two-phase commit. The headings RM1 and RM2 do not imply any particular
ordering.

RM1 RM2 Result to AP
[XAER_RMFAIL] any → [TX_FAIL]
[XAER_INVAL] any → [TX_FAIL]
[XAER_PROTO] any → [TX_FAIL] 2

[XAER_NOTA] any → [TX_FAIL] 2

[XA_HEURMIX] any → [TX_MIXED]
[XA_HEURHAZ] any → [TX_HAZARD]
[XA_RETRY] any → 1

any commit † any commit † → [TX_OK]
any commit † any rollback ‡ → [TX_MIXED]
any rollback ‡ any rollback ‡ → [TX_ROLLBACK]

Notes:

1. The [XA_RETRY] code tells the TM to reissue the call. The result the TM returns
to the AP depends on the ultimate outcome of the reissued call. If the RM keeps
returning [XA_RETRY], the TM may return [TX_HAZARD], or assume it cannot
use the RM and return [TX_ERROR] or [TX_FAIL] (see Origin of Error on page
62).

2. If [XAER_PROTO] or [XAER_NOTA] is returned on xa_commit(), this indicates a
serious synchronisation failure between the TM and the RM.

If the transaction_control characteristic is set to TX_CHAINED, xa_start () may fail after
xa_commit() is complete. In that case [TX_NO_BEGIN], [TX_ROLLBACK_NO_BEGIN],
[TX_MIXED_NO_BEGIN] or [TX_HAZARD_NO_BEGIN] is returned depending on the case.
These values correspond to [TX_OK], [TX_ROLLBACK], [TX_MIXED] and [TX_HAZARD]
respectively, which would have been returned if xa_start () had not failed.

† Commitment indications comprise [XA_HEURCOM], and [XA_OK] from xa_commit ().
‡ Rollback indications comprise [XA_HEURRB] and [XAER_RMERR].

68 X/Open CAE Specification

Suggested Mappings to the XA Interface Suggested Mapping of Return Codes: Multiple RMs

The following table describes combined outcomes from xa_rollback () when issued during the
second phase of a two-phase commit, or when issued as the result of a tx_rollback (). The
headings RM1 and RM2 do not imply any particular ordering.

RM1 RM2 Result to AP
[XAER_RMFAIL] any → [TX_FAIL]
[XAER_INVAL] any → [TX_FAIL]
[XAER_PROTO] any → [TX_FAIL]
[XA_HEURMIX] any → [TX_MIXED]
[XA_HEURHAZ] any → [TX_HAZARD]
[XA_RETRY] any → 1

[XA_HEURCOM] [XA_HEURCOM] → 3

[XA_HEURCOM] any rollback † → [TX_MIXED] 2

any rollback † any rollback † → 4

Notes:

1. The [XA_RETRY] code tells the TM to reissue the call. The result the TM returns
to the AP depends on the ultimate outcome of the reissued call. If the RM keeps
returning [XA_RETRY], the TM may return [TX_HAZARD], or assume it cannot
use the RM and return [TX_ERROR] or [TX_FAIL] (see Origin of Error on page
62).

2. If [XAER_NOTA] is returned on xa_rollback (), following a successful xa_prepare(),
this indicates a serious synchronisation failure between the TM and the RM. The
TM should return [TX_FAIL].

3. These return codes indicate to the TM that the RM heuristically committed the
work done on behalf of the global transaction. If the AP called tx_commit(), it
receives [TX_OK]; if the AP called tx_rollback (), it receives [TX_COMMITTED].

4. If the AP called tx_commit(), it receives [TX_ROLLBACK]; if the AP called
tx_rollback (), it receives [TX_OK].

If the transaction_control characteristic is set to TX_CHAINED, xa_start () may fail after
xa_rollback () is complete. In that case [TX_NO_BEGIN], [TX_COMMITTED_NO_BEGIN],
[TX_MIXED_NO_BEGIN] or [TX_HAZARD_NO_BEGIN] is returned depending on the case.
These values correspond to [TX_OK], [TX_COMMITTED], [TX_MIXED] and [TX_HAZARD]
respectively, which would have been returned if xa_start () had not failed.

† Rollback indications comprise [XA_HEURRB], [XAER_NOTA], [XAER_RMERR], and [XAER_OK].

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 69

Suggested Mappings to the XA Interface

70 X/Open CAE Specification

Index

<tx.h> header ..15, 55
access to resources..1
ACID properties..7

atomicity...7
consistency...7
coordination by TM ...7
durability..7
isolation ..7
responsibility of RM...7

AP...1
component ...4

AP-CRM interface...5
AP-RM interface..5
AP-TM interface..5
API

portability...1
application

communication ...1
distribution ..1
portability...1
program..1

application program ..4
component ...4
interface to CRM...5
interface to RM..5
interface to TM..5
sharing resources..1

atomicity ...7
TM..4

atomicity of commit ...8
autonomy of RM...8
awareness

lack of between RMs..8
C language ...15

Common Usage C ..15
header ...15
ISO C ...15
naming conventions ..15
reference manual pages19
TX interface overview ...9

chained transaction ..12
characteristic

commit_return....................................13, 15, 35, 55
commit_return in TXCOMMIT39
commit_return in TXINFORM41
commit_return in TXSETCOMMITRET46

commit_return in tx_commit()23
commit_return in tx_info()25
commit_return in tx_set_commit_return()29
public information ...54
transaction_control............................13, 15, 35, 55
transaction_control in TXCOMMIT............39-40
transaction_control in TXINFORM41
transaction_control in TXROLLBACK.......44-45
transaction_control in TXSETTRANCTL........49
transaction_control in tx_commit()............23-24
transaction_control in tx_info()25
transaction_control in tx_rollback()27-28
transaction_control in..
tx_set_transaction_control()..............................31
transaction_timeout.....................12-13, 15, 35, 55
transaction_timeout in TXBEGIN.....................36
transaction_timeout in TXCOMMIT................39
transaction_timeout in TXINFORM.................41
transaction_timeout in TXROLLBACK...........44
transaction_timeout in TXSETTIMEOUT48
transaction_timeout in tx_begin()....................20
transaction_timeout in tx_commit()................23
transaction_timeout in tx_info().......................25
transaction_timeout in ..
tx_set_transaction_timeout()32
TX-CHAINED...49
TX-COMMIT-COMPLETED..............................46
TX-COMMIT-DECISION-LOGGED46
TX-UNCHAINED ..49
TX_CHAINED ..31
TX_COMMIT_COMPLETED29
TX_COMMIT_DECISION_LOGGED..............29
tx_set_commit_return()11, 29, 52
tx_set_transaction_control()12, 31, 52
tx_set_transaction_timeout()12, 32, 52
TX_UNCHAINED..31

COBOL language
reference manual pages33
X/Open COBOL...33

commit
atomic..8
decision...4
early return ..11

committing transaction ...7
commit_return characteristic13

in <tx_h> header...15, 55

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 71

Index

in TX-INFO-AREA ...35
in TXCOMMIT..39
in TXINFORM...41
in TXSETCOMMITRET.......................................46
in tx_commit() ..23
in tx_info() ...25
in tx_set_commit_return().....................11, 29, 52
public information ...54
TX-COMMIT-COMPLETED..............................46
TX-COMMIT-DECISION-LOGGED46
TX_COMMIT_COMPLETED29
TX_COMMIT_DECISION_LOGGED..............29

Common Usage C ..15
communication protocol...1
communication resource manager1

component ...4
interface to AP...5
interface to OSI-TP ...6
interface to TM..5
subordinate ..4
superior...4

completion of transaction ...7
coordination...4

component ...3
AP ..1, 4
AP-CRM interface ..5
AP-RM interface ...5
AP-TM interface..5
CRM ..1, 4
CRM-OSI TP interface ...6
failure ..4
interchangeability...1
interface between..5
interoperability ...1
RM ...1, 4
RM-TM interface...5
TM..1, 4
TM-CRM interface..5

consistency ...7
consistent effect of decision......................................7
consistent state ..7
context...8
control ...3

thread of ...8
CPI-C interface...4-5
CRM...1

component ...4
interface to AP...5
interface to OSI-TP ...6
interface to TM..5
subordinate ..4

superior...4
CRM-AP interface...5
CRM-OSI TP interface ...6
CRM-TM interface..5
data structure

TX-INFO-AREA..35
TX-RETURN-STATUS ...34
TXINFO ..25
TXINTRO ...34
tx_info_t..15
XID...15
xid_t...15

data type
TRANSACTION_STATE16

database ..1
DBMS...4
decision to commit ...4
decision to commit or roll back7
definition ..7

DTP model ...3
transaction properties..7

demarcation of transaction.......................................4
distributed transaction processing (DTP)7
DTP

implications of...7
DTP model ...1, 3

definition ..3
durability..7
error

return code...17
failure of component ...19, 33
failure of system component....................................7
file access method...4
file access system ..1
flow of control ...3
functional component

AP ..4
CRM ..4
RM ...4
TM..4

functional model...3
global transaction ...4, 8

beginning and completing..................................11
header

<tx.h>..15
heuristics ..11

hazard decision...11
heuristic completion ..11
mixed decision ..11

implementation requirements53
AP ..53

72 X/Open CAE Specification

Index

RM ...53
TM..54

implications of DTP ...7
interchangeability...1
interface ..3

AP-CRM ...5
AP-RM ..5
AP-TM ..2, 5
between components ...5
CPI-C ...4-5
CRM-OSI TP ..6
function...5
illustrated ...3
ISAM..4-5
SQL ..5
system-level ...1
TM-CRM...5
TM-RM..5
TX...5
TxRPC..4-5
XA ..5
XA+ ..4-5
XAP-TP...4, 6
XATMI ...4-5

interface overview
C-Language..9

interoperability..1
introduction to TX interface1
ISAM interface ...4-5
ISO C ...15
isolation ..7
location-independence of transaction work7
lock on shared resource...8
mapping (suggested) ...59

function calls ...60
return codes ...62
return codes for a single RM..............................64
return codes for multiple RMs...........................67
TX to XA...59
XA to TX...59

method of referencing transaction7
model...1, 3

functional ...3
modifying shared resource.......................................7
name space

TX...15
naming conventions...15
native interface..5

constraints ..5
operations known within RM..................................8
OSI TP standards ..4, 6

OSI TP-CRM interface ...6
overview of C language interface9
paradigm

CPI-C interface ..4-5
TxRPC interface...4-5
XATMI interface ..4-5

portability...1
process ..8
protocol...1
public information..54
recovery

TM..4
reference manual pages

C language ...19
COBOL language..33

referencing transaction
method of ...7

resource...1
access to ..1
database..1
file access system..1
manager..1
system ...8

resource manager
ACID properties responsibility7
interface to AP...5
interface to TM..5

return code ...17
error...17
success ..17

return code (C language)
TX_COMMITTED in tx_rollback()27
TX_COMMITTED_NO_BEGIN in........................
tx_rollback() ..28
TX_EINVAL in tx_set_commit_return().........29
TX_EINVAL in tx_set_transaction_control().31
TX_EINVAL in tx_set_transaction_timeout()32
TX_ERROR in tx_begin()20
TX_ERROR in tx_close()22
TX_ERROR in tx_open()26
TX_FAIL in tx_begin() ..20
TX_FAIL in tx_close() ...22
TX_FAIL in tx_commit()24
TX_FAIL in tx_info() ...25
TX_FAIL in tx_open() ...26
TX_FAIL in tx_rollback()....................................28
TX_FAIL in tx_set_commit_return()30
TX_FAIL in tx_set_transaction_control()31
TX_FAIL in tx_set_transaction_timeout()32
TX_HAZARD in tx_commit()...........................23
TX_HAZARD in tx_rollback()27

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 73

Index

TX_HAZARD_NO_BEGIN in tx_commit()...24
TX_HAZARD_NO_BEGIN in tx_rollback() ..27
TX_MIXED in tx_commit()................................23
TX_MIXED in tx_rollback()27
TX_MIXED_NO_BEGIN in tx_commit()........23
TX_MIXED_NO_BEGIN in tx_rollback()27
TX_NOT_SUPPORTED in......................................
tx_set_commit_return()......................................29
TX_NO_BEGIN in tx_commit()........................23
TX_NO_BEGIN in tx_rollback().......................27
TX_OK in tx_begin() ...20
TX_OK in tx_close() ..22
TX_OK in tx_commit()23
TX_OK in tx_open() ..26
TX_OK in tx_rollback().......................................27
TX_OK in tx_set_commit_return()29
TX_OK in tx_set_transaction_control()31
TX_OK in tx_set_transaction_timeout()32
TX_OUTSIDE in tx_begin()20
TX_PROTOCOL_ERROR in tx_begin()20
TX_PROTOCOL_ERROR in tx_close()22
TX_PROTOCOL_ERROR in tx_commit()24
TX_PROTOCOL_ERROR in tx_info().............25
TX_PROTOCOL_ERROR in tx_rollback()28
TX_PROTOCOL_ERROR in...................................
tx_set_commit_return()......................................29
TX_PROTOCOL_ERROR in...................................
tx_set_transaction_control()..............................31
TX_PROTOCOL_ERROR in...................................
tx_set_transaction_timeout()32
TX_ROLLBACK in tx_commit().......................23
TX_ROLLBACK_NO_BEGIN in
tx_commit()...23

return status (COBOL language)
TX-COMMITTED in TXROLLBACK...............45
TX-COMMITTED-NO-BEGIN in..........................
TXROLLBACK..45
TX-EINVAL in TXSETCOMMITRET47
TX-EINVAL in TXSETTIMEOUT......................48
TX-EINVAL in TXSETTRANCTL49
TX-ERROR in TXBEGIN.....................................36
TX-ERROR in TXCLOSE.....................................38
TX-ERROR in TXOPEN43
TX-FAIL in TXBEGIN..36
TX-FAIL in TXCLOSE ...38
TX-FAIL in TXCOMMIT.....................................40
TX-FAIL in TXINFORM......................................41
TX-FAIL in TXOPEN ...43
TX-FAIL in TXROLLBACK45
TX-FAIL in TXSETCOMMITRET......................47
TX-FAIL in TXSETTIMEOUT48

TX-FAIL in TXSETTRANCTL49
TX-HAZARD in TXCOMMIT40
TX-HAZARD in TXROLLBACK.......................44
TX-HAZARD-NO-BEGIN in TXCOMMIT.....40
TX-HAZARD-NO-BEGIN in TXROLLBACK44
TX-MIXED in TXCOMMIT39
TX-MIXED in TXROLLBACK............................44
TX-MIXED-NO-BEGIN in TXCOMMIT..........39
TX-MIXED-NO-BEGIN in TXROLLBACK.....44
TX-NO-BEGIN in TXCOMMIT.........................39
TX-NO-BEGIN in TXROLLBACK44
TX-NOT-SUPPORTED in
TXSETCOMMITRET ...46
TX-OK in TXBEGIN...36
TX-OK in TXCLOSE ..38
TX-OK in TXCOMMIT..39
TX-OK in TXINFORM...41
TX-OK in TXOPEN ..43
TX-OK in TXROLLBACK44
TX-OK in TXSETCOMMITRET.........................46
TX-OK in TXSETTIMEOUT48
TX-OK in TXSETTRANCTL49
TX-OUTSIDE in TXBEGIN.................................36
TX-PROTOCOL-ERROR in TXBEGIN36
TX-PROTOCOL-ERROR in TXCLOSE............38
TX-PROTOCOL-ERROR in TXCOMMIT40
TX-PROTOCOL-ERROR in TXINFORM41
TX-PROTOCOL-ERROR in TXROLLBACK...45
TX-PROTOCOL-ERROR in....................................
TXSETCOMMITRET ...47
TX-PROTOCOL-ERROR in....................................
TXSETTIMEOUT..48
TX-PROTOCOL-ERROR in....................................
TXSETTRANCTL ...49
TX-ROLLBACK in TXCOMMIT39
TX-ROLLBACK-NO-BEGIN in
TXCOMMIT...39

RM..1
ACID properties responsibility7
component ...4
opening and closing...10
work done across RMs ..7

RM-AP interface..5
RM-TM interface...5
rolling back transaction ...7
shared resource ...8

modifying...7
permanence of changes to7
RM ...4

simultaneous updates across RMs..........................8

74 X/Open CAE Specification

Index

spanning RMs
distributed transaction ..7

specification
CPI-C interface..5
TX interface..5
TxRPC interface ..5
XA interface ...5
XA+ interface...5
XAP-TP interface ..6
XATMI interface..5

SQL
interface ..5

standard
ISO C ...15
OSI TP ...4, 6

state table..51
status of work done anywhere7
system component

failure of ...7
system-level interface ..1
thread of control..8

same across calls...8
thread state...15
TM..1, 4

ACID properties coordination.............................7
API...5
atomicity...4
recovery ..4

TM-AP interface..5
TM-CRM interface..5
TM-RM interface...5
transaction

actions ...1
beginning and completing..................................11
boundary ..4
branch identifier..15
chained and unchained12
characteristics..13
commit decision..4
committing...7
completion ...1, 4
context...8
defining boundaries ...1
definition of..7
demarcation ...4-5
failure ..1
global...1, 4, 8
identifier ...15
identifier assigning...1
information..12, 15
manager..1

properties ...7
recovery ..1
RM-internal..8
rolling back ..7
state information ..12

transaction control
tx_begin()...5

transaction manager
ACID properties coordination.............................7
API...5
atomicity...4
interface to AP...5
interface to CRM...5
interface to RM..5
recovery ..4

transaction mode setting...35
transaction timeout ..12
transaction work

location-independence of7
transaction_control characteristic13

in <tx_h> header...15, 55
in TX-INFO-AREA...35
in TXCOMMIT ..39-40
in TXINFORM...41
in TXROLLBACK..44-45
in TXSETTRANCTL...49
in tx_commit() ..23-24
in tx_info() ...25
in tx_rollback()..27-28
in tx_set_transaction_control().............12, 31, 52
TX-CHAINED...39, 44, 49
TX-UNCHAINED....................................39, 44, 49
TX_CHAINED....................................23, 27, 31, 51
TX_UNCHAINED.............................23, 27, 31, 51

TRANSACTION_STATE ..16
transaction_timeout characteristic13, 32

in <tx_h> header...15, 55
in TX-INFO-AREA...35
in TXBEGIN...36
in TXCOMMIT..39
in TXINFORM...41
in TXROLLBACK ...44
in TXSETTIMEOUT ...48
in tx_begin() ..20
in tx_commit() ..23
in tx_info() ...25
in tx_rollback() ...27
in tx_set_transaction_timeout()12, 32, 52

TX interface ..5
<tx.h> header ..15, 55
C language manual pages19

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 75

Index

C-Language overview ...9
COBOL language manual pages.......................33
implementation requirements53
introduction ...1
model ..3
name space...15
state table ...51
suggested mappings..59

TX-CHAINED
in TXSETTRANCTL...49

TX-COMMIT-COMPLETED
in TXSETCOMMITRET.......................................46

TX-COMMIT-DECISION-LOGGED
in TXSETCOMMITRET.......................................46

TX-COMMITTED ...35
in TXROLLBACK ...45

TX-COMMITTED-NO-BEGIN35
in TXROLLBACK ...45

TX-EINVAL..34
in TXSETCOMMITRET.......................................47
in TXSETTIMEOUT ...48
in TXSETTRANCTL...49

TX-ERROR ...34
in TXBEGIN...36
in TXCLOSE...38
in TXOPEN ..43

TX-FAIL...33-34
in TXBEGIN...36
in TXCLOSE...38
in TXCOMMIT..40
in TXINFORM...41
in TXOPEN ..43
in TXROLLBACK ...45
in TXSETCOMMITRET.......................................47
in TXSETTIMEOUT ...48
in TXSETTRANCTL...49

TX-HAZARD...34
in TXCOMMIT..40
in TXROLLBACK ...44

TX-HAZARD-NO-BEGIN35
in TXCOMMIT..40
in TXROLLBACK ...44

TX-INFO-AREA data structure35
TX-MIXED..34

in TXCOMMIT..39
in TXROLLBACK ...44

TX-MIXED-NO-BEGIN...35
in TXCOMMIT..39
in TXROLLBACK ...44

TX-NO-BEGIN ..35
in TXCOMMIT..39

in TXROLLBACK ...44
TX-NOT-SUPPORTED..34

in TXSETCOMMITRET.......................................46
TX-OK ...34

in TXBEGIN...36
in TXCLOSE...38
in TXCOMMIT..39
in TXINFORM...41
in TXOPEN ..43
in TXROLLBACK ...44
in TXSETCOMMITRET.......................................46
in TXSETTIMEOUT ...48
in TXSETTRANCTL...49

TX-OUTSIDE ...34
in TXBEGIN...36

TX-PROTOCOL-ERROR...34
in TXBEGIN...36
in TXCLOSE...38
in TXCOMMIT..40
in TXINFORM...41
in TXROLLBACK ...45
in TXSETCOMMITRET.......................................47
in TXSETTIMEOUT ...48
in TXSETTRANCTL...49

TX-RETURN-STATUS data structure...................34
TX-ROLLBACK...34

in TXCOMMIT..39
TX-ROLLBACK-NO-BEGIN..................................35

in TXCOMMIT..39
TX-UNCHAINED

in TXSETTRANCTL...49
TXBEGIN..36
TXCLOSE ...38
TXCOMMIT...39
TXINFDEF..35
TXINFORM..41
TXINTRO ...34
TXINTRO data structure ..34
TXOPEN ...43
TXROLLBACK..44
TxRPC interface ...4-5
TXSETCOMMITRET..46
TXSETTIMEOUT ..48
TXSETTRANCTL ...49
tx_begin()...11, 20

unchained mode ...12
TX_CHAINED

in tx_set_transaction_control()31
tx_close()..10, 22

chained mode ..12
tx_commit()...11, 23

76 X/Open CAE Specification

Index

chained mode ..12
early return ..11
timeout..12

TX_COMMITTED
in tx_rollback() ...27

TX_COMMITTED_NO_BEGIN17
in tx_rollback() ...28

TX_COMMIT_COMPLETED
in tx_set_commit_return()29

TX_COMMIT_DECISION_LOGGED
in tx_set_commit_return()29

TX_EINVAL...17
in tx_set_commit_return()29
in tx_set_transaction_control()31
in tx_set_transaction_timeout()........................32

TX_ERROR...17
in tx_begin() ..20
in tx_close() ...22
in tx_open() ...26

TX_FAIL ...17, 19
in tx_begin() ..20
in tx_close() ...22
in tx_commit() ..24
in tx_info() ...25
in tx_open() ...26
in tx_rollback() ...28
in tx_set_commit_return()30
in tx_set_transaction_control()31
in tx_set_transaction_timeout()........................32

TX_HAZARD ..17
in tx_commit() ..23
in tx_rollback() ...27

TX_HAZARD_NO_BEGIN....................................17
in tx_commit() ..24
in tx_rollback() ...27

tx_info()..25
tx_info_t data structure ...15
TX_MIXED...17

in tx_commit() ..23
in tx_rollback() ...27

TX_MIXED_NO_BEGIN...17
in tx_commit() ..23
in tx_rollback() ...27

TX_NOT_SUPPORTED ..17
in tx_set_commit_return()29

TX_NO_BEGIN...17
in tx_commit() ..23
in tx_rollback() ...27

TX_OK ..17
in tx_begin() ..20
in tx_close() ...22

in tx_commit() ..23
in tx_open() ...26
in tx_rollback() ...27
in tx_set_commit_return()29
in tx_set_transaction_control()31
in tx_set_transaction_timeout()........................32

tx_open()..10, 26
TX_OUTSIDE ..17

in tx_begin() ..20
TX_PROTOCOL_ERROR17

in tx_begin() ..20
in tx_close() ...22
in tx_commit() ..24
in tx_info() ...25
in tx_rollback() ...28
in tx_set_commit_return()29
in tx_set_transaction_control()31
in tx_set_transaction_timeout()........................32

TX_ROLLBACK..17
in tx_commit() ..23

tx_rollback() ..11, 27
chained mode ..12
timeout..12

TX_ROLLBACK_NO_BEGIN................................17
in tx_commit() ..23

tx_set_commit_return() ..29
early return ..11

tx_set_transaction_control()31
tx_set_transaction_timeout().................................32
TX_UNCHAINED

in tx_set_transaction_control()31
unchained transaction ...12
undoing work..7
uniform effect of decision ...7
unit of work ...7
work done ..7
work done across RMs ..7
work done anywhere

status of ..7
X/Open publications ...1
X/Open specification

COBOL interface ..33
ISAM interface ..5
SQL interface ...5
TX interface..5
XA interface ...5
XA+ interface...5
XAP-TP interface ..6

X/Open-compliant interface....................................7
XA interface ...5
XA+ interface ...4-5

Distributed Transaction Processing: The TX (Transaction Demarcation) Specification 77

Index

XAP-TP interface ..4, 6
XATMI interface ..4-5
XID...15, 35
XID data structure ..15
xid_t data structure ..15

78 X/Open CAE Specification

