

RTRTR 0.2.2

	A versatile toolbox
	RTRTR is an RPKI data proxy, designed to collect Validated ROA Payloads
from one or more sources in multiple formats and dispatch it onwards. It
provides the means to implement multiple distribution architectures for
RPKI such as centralised RPKI validators that dispatch data to local
caching RTR servers.

	Secure and redundant RTR connections
	RTRTR can read RPKI data from multiple RPKI Relying Party packages via RTR
and JSON and, in turn, provide an RTR service for routers to connect to.
The HTTP server provides the validated data set in JSON format, as well as
a monitoring endpoint in plain text and Prometheus format. TLS is
supported on all connections.

	Open source with community and professional support
	NLnet Labs offers professional support services [https://www.nlnetlabs.nl/services/contracts/] with a service-level
agreement. We also provide a mailing list [https://lists.nlnetlabs.nl/mailman/listinfo/rpki] and Discord server [https://discord.gg/8dvKB5Ykhy] for community support and to exchange
operational experiences. RTRTR is liberally licensed under the BSD
3-Clause license [https://github.com/NLnetLabs/rtrtr/blob/main/LICENSE].

[image: Discord] [https://discord.gg/8dvKB5Ykhy]

Installation

System Requirements

When choosing a system to run RTRTR on, make sure you have 1GB of available
memory and 1GB of disk space.

Binary Packages

Getting started with RTRTR is really easy by installing a binary package
for either Debian and Ubuntu or for Red Hat Enterprise Linux (RHEL) and
compatible systems such as Rocky Linux. Alternatively, you can run with
Docker.

You can also build RTRTR from the source code using Cargo, Rust’s build
system and package manager. Cargo lets you to run RTRTR on almost any
operating system and CPU architecture. Refer to the Building From Source section
to get started.

Debian

To install an RTRTR package, you need the 64-bit version of one of
these Debian versions:

	Debian Bullseye 11

	Debian Buster 10

	Debian Stretch 9

Packages for the amd64/x86_64 architecture are available for
all listed versions. In addition, we offer armhf architecture
packages for Debian/Raspbian Bullseye, and arm64 for Buster.

First update the apt package index:

sudo apt update

Then install packages to allow apt to use a repository over HTTPS:

sudo apt install \
 ca-certificates \
 curl \
 gnupg \
 lsb-release

Add the GPG key from NLnet Labs:

curl -fsSL https://packages.nlnetlabs.nl/aptkey.asc | sudo gpg --dearmor -o /usr/share/keyrings/nlnetlabs-archive-keyring.gpg

Now, use the following command to set up the main repository:

echo \
"deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/nlnetlabs-archive-keyring.gpg] https://packages.nlnetlabs.nl/linux/debian \
$(lsb_release -cs) main" | sudo tee /etc/apt/sources.list.d/nlnetlabs.list > /dev/null

Update the apt package index once more:

sudo apt update

You can now install RTRTR with:

sudo apt install rtrtr

Configure RTRTR by editing /etc/rtrtr.conf
and start it with:

sudo systemctl enable --now rtrtr

You can check the status of RTRTR with:

sudo systemctl status rtrtr

You can view the logs with:

sudo journalctl --unit=rtrtr

Ubuntu

To install an RTRTR package, you need the 64-bit version of one of
these Ubuntu versions:

	Ubuntu Jammy 22.04 (LTS)

	Ubuntu Focal 20.04 (LTS)

	Ubuntu Bionic 18.04 (LTS)

	Ubuntu Xenial 16.04 (LTS)

Packages are available for the amd64/x86_64 architecture only.

First update the apt package index:

sudo apt update

Then install packages to allow apt to use a repository over HTTPS:

sudo apt install \
 ca-certificates \
 curl \
 gnupg \
 lsb-release

Add the GPG key from NLnet Labs:

curl -fsSL https://packages.nlnetlabs.nl/aptkey.asc | sudo gpg --dearmor -o /usr/share/keyrings/nlnetlabs-archive-keyring.gpg

Now, use the following command to set up the main repository:

echo \
"deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/nlnetlabs-archive-keyring.gpg] https://packages.nlnetlabs.nl/linux/ubuntu \
$(lsb_release -cs) main" | sudo tee /etc/apt/sources.list.d/nlnetlabs.list > /dev/null

Update the apt package index once more:

sudo apt update

You can now install RTRTR with:

sudo apt install rtrtr

Configure RTRTR by editing /etc/rtrtr.conf
and start it with:

sudo systemctl enable --now rtrtr

You can check the status of RTRTR with:

sudo systemctl status rtrtr

You can view the logs with:

sudo journalctl --unit=rtrtr

RHEL/CentOS

To install an RTRTR package, you need Red Hat Enterprise Linux
(RHEL) 7 or 8, or compatible operating system such as Rocky Linux.
Packages are available for the amd64/x86_64 architecture only.

First create a file named /etc/yum.repos.d/nlnetlabs.repo, enter
this configuration and save it:

[nlnetlabs]
name=NLnet Labs
baseurl=https://packages.nlnetlabs.nl/linux/centos/$releasever/main/$basearch
enabled=1

Then run the following command to add the public key:

sudo rpm --import https://packages.nlnetlabs.nl/aptkey.asc

You can then install RTRTR by running:

sudo yum install -y rtrtr

Configure RTRTR by editing /etc/rtrtr.conf
and start it with:

sudo systemctl enable --now rtrtr

You can check the status of RTRTR with:

sudo systemctl status rtrtr

You can view the logs with:

sudo journalctl --unit=rtrtr

Docker

RTRTR Docker images are built with Alpine Linux for
amd64/x86_64 architecture.

To run RTRTR with Docker you will first need to create an
rtrtr.conf file somewhere on your host computer and make that
available to the Docker container when you run it. For example if your
config file is in /etc/rtrtr.conf on the host computer:

docker run -v /etc/rtrtr.conf:/etc/rtrtr.conf nlnetlabs/rtrtr -c /etc/rtrtr.conf

RTRTR will need network access to fetch and publish data according to the
configured units and targets respectively. Explaining Docker networking
is beyond the scope of this Quick Start, however below are a couple of
examples to get you started.

If you need an RTRTR unit to fetch data from a source port on the host
you will also need to give the Docker container access to the host
network. For example one way to do this is with --net=host, where
... represents the rest of the arguments to pass to Docker
and RTRTR:

docker run --net=host ...

If you’re not using --net=host you will need to tell Docker to
expose the RTRTR target ports, either one by one using -p, or you
can publish the default ports exposed by the Docker container (and at the
same time remap them to high numbered ports) using -P:

docker run -p 8080:8080/tcp -p 9001:9001/tcp ...

Or:

docker run -P ...

Updating

Debian

To update an existing RTRTR installation, first update the
repository using:

sudo apt update

You can use this command to get an overview of the available versions:

sudo apt policy rtrtr

You can upgrade an existing RTRTR installation to the latest version
using:

sudo apt --only-upgrade install rtrtr

Ubuntu

To update an existing RTRTR installation, first update the
repository using:

sudo apt update

You can use this command to get an overview of the available versions:

sudo apt policy rtrtr

You can upgrade an existing RTRTR installation to the latest version
using:

sudo apt --only-upgrade install rtrtr

RHEL/CentOS

To update an existing RTRTR installation, you can use this command
to get an overview of the available versions:

sudo yum --showduplicates list rtrtr

You can update to the latest version using:

sudo yum update -y rtrtr

Docker

Upgrading to the latest version of RTRTR can be done with:

docker run -it nlnetlabs/rtrtr:latest

Installing Specific Versions

Before every new release of RTRTR, one or more release candidates are
provided for testing through every installation method. You can also install
a specific version, if needed.

Debian

If you would like to try out release candidates of RTRTR you can add
the proposed repository to the existing main repository described
earlier.

Assuming you already have followed the steps to install regular releases,
run this command to add the additional repository:

echo \
"deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/nlnetlabs-archive-keyring.gpg] https://packages.nlnetlabs.nl/linux/debian \
$(lsb_release -cs)-proposed main" | sudo tee /etc/apt/sources.list.d/nlnetlabs-proposed.list > /dev/null

Make sure to update the apt package index:

sudo apt update

You can now use this command to get an overview of the available
versions:

sudo apt policy rtrtr

You can install a specific version using <package name>=<version>,
e.g.:

sudo apt install rtrtr=0.1.1~rc2-1buster

Ubuntu

If you would like to try out release candidates of RTRTR you can add
the proposed repository to the existing main repository described
earlier.

Assuming you already have followed the steps to install regular releases,
run this command to add the additional repository:

echo \
"deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/nlnetlabs-archive-keyring.gpg] https://packages.nlnetlabs.nl/linux/ubuntu \
$(lsb_release -cs)-proposed main" | sudo tee /etc/apt/sources.list.d/nlnetlabs-proposed.list > /dev/null

Make sure to update the apt package index:

sudo apt update

You can now use this command to get an overview of the available
versions:

sudo apt policy rtrtr

You can install a specific version using <package name>=<version>,
e.g.:

sudo apt install rtrtr=0.1.1~rc2-1bionic

RHEL/CentOS

To install release candidates of RTRTR, create an additional repo
file named /etc/yum.repos.d/nlnetlabs-testing.repo, enter this
configuration and save it:

[nlnetlabs-testing]
name=NLnet Labs Testing
baseurl=https://packages.nlnetlabs.nl/linux/centos/$releasever/proposed/$basearch
enabled=1

You can use this command to get an overview of the available versions:

sudo yum --showduplicates list rtrtr

You can install a specific version using
<package name>-<version info>, e.g.:

sudo yum install -y rtrtr-0.1.1

Docker

All release versions of RTRTR, as well as release candidates and
builds based on the latest main branch are available on Docker Hub [https://hub.docker.com/r/nlnetlabs/rtrtr/tags?page=1&ordering=last_updated].

For example, installing RTRTR 0.1.1 is as simple as:

docker run -it nlnetlabs/rtrtr:v0.1.1

Building From Source

In addition to meeting the system requirements, there are two things you need to build RTRTR: a
C toolchain and Rust. You can run RTRTR on any operating system and CPU
architecture where you can fulfil these requirements.

Dependencies

C Toolchain

Some of the libraries RTRTR depends on require a C toolchain to be present.
Your system probably has some easy way to install the minimum set of packages
to build from C sources. For example, this command will install everything
you need on Debian/Ubuntu:

apt install build-essential

If you are unsure, try to run cc on a command line. If there is a
complaint about missing input files, you are probably good to go.

Rust

The Rust compiler runs on, and compiles to, a great number of platforms,
though not all of them are equally supported. The official Rust Platform
Support [https://doc.rust-lang.org/nightly/rustc/platform-support.html] page provides an overview of the various support levels.

While some system distributions include Rust as system packages, RTRTR
relies on a relatively new version of Rust, currently 1.52 or newer. We
therefore suggest to use the canonical Rust installation via a tool called
rustup.

Assuming you already have curl installed, you can install
rustup and Rust by simply entering:

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

Alternatively, visit the Rust website [https://www.rust-lang.org/tools/install] for other installation methods.

Building and Updating

In Rust, a library or executable program such as RTRTR is called a
crate. Crates are published on crates.io [https://crates.io/crates/rtrtr], the Rust package registry. Cargo is
the Rust package manager. It is a tool that allows Rust packages to declare
their various dependencies and ensure that you’ll always get a repeatable
build.

Cargo fetches and builds RTRTR’s dependencies into an executable binary
for your platform. By default you install from crates.io, but you can for
example also install from a specific Git URL, as explained below.

Installing the latest RTRTR release from crates.io is as simple as
running:

cargo install --locked rtrtr

The command will build RTRTR and install it in the same directory that
Cargo itself lives in, likely $HOME/.cargo/bin. This means RTRTR
will be in your path, too.

Updating

If you want to update to the latest version of RTRTR, it’s recommended
to update Rust itself as well, using:

rustup update

Use the --force option to overwrite an existing version with the latest
RTRTR release:

cargo install --locked --force rtrtr

Once RTRTR is installed, you need to create a Configuration file that
suits your needs. The config file to use needs to be passed to RTRTR via the
-c option, i.e.:

rtrtr -c rtrtr.conf

Installing Specific Versions

If you want to install a specific version of
RTRTR using Cargo, explicitly use the --version option. If needed,
use the --force option to overwrite an existing version:

cargo install --locked --force rtrtr --version 0.2.0-rc2

All new features of RTRTR are built on a branch and merged via a pull
request [https://github.com/NLnetLabs/rtrtr/pulls], allowing you to
easily try them out using Cargo. If you want to try a specific branch from
the repository you can use the --git and --branch options:

cargo install --git https://github.com/NLnetLabs/rtrtr.git --branch main

See also

For more installation options refer to the Cargo book [https://doc.rust-lang.org/cargo/commands/cargo-install.html#install-options].

Platform Specific Instructions

For some platforms, rustup cannot provide binary releases to
install directly. The Rust Platform Support [https://doc.rust-lang.org/nightly/rustc/platform-support.html] page lists
several platforms where official binary releases are not available, but Rust
is still guaranteed to build. For these platforms, automated tests are not
run so it’s not guaranteed to produce a working build, but they often work to
quite a good degree.

OpenBSD

On OpenBSD, patches [https://github.com/openbsd/ports/tree/master/lang/rust/patches] are
required to get Rust running correctly, but these are well maintained and
offer the latest version of Rust quite quickly.

Rust can be installed on OpenBSD by running:

pkg_add rust

CentOS 6

The standard installation method does not work when using CentOS 6. Here, you
will end up with a long list of error messages about missing assembler
instructions. This is because the assembler shipped with CentOS 6 is too old.

You can get the necessary version by installing the Developer Toolset 6 [https://www.softwarecollections.org/en/scls/rhscl/devtoolset-6/] from the
Software Collections [https://wiki.centos.org/AdditionalResources/Repositories/SCL] repository.
On a virgin system, you can install Rust using these steps:

sudo yum install centos-release-scl
sudo yum install devtoolset-6
scl enable devtoolset-6 bash
curl https://sh.rustup.rs -sSf | sh
source $HOME/.cargo/env

Configuration

RTRTR uses two classes of components: units and targets. Units take data
from somewhere and produce a single, constantly updated data set. Targets take
the data set from exactly one other unit and serve it in some specific way.

Both units and targets have a name — so that we can refer to them — and a type
that defines which particular kind of unit or target this is. For each type,
additional arguments need to be provided. Which these are and what they mean
depends on the type.

Units and targets can be wired together in any way to achieve your specific
goal. This is done in a configuration file, which also specifies several general
parameters for logging, as well as status and Prometheus metrics endpoints via
the built-in HTTP server.

Note

The configuration file is in TOML format, which is somewhat similar to INI files. You can
find more information on the TOML website [https://toml.io/en/].

General Parameters

The configuration file starts out with a number of optional parameters to
specify logging. The built-in HTTP server provides status information at the
/status path and Prometheus metrics at the /metrics path.
Note that details are provided for each unit and each target.

The minimum log level to consider.
log_level = "debug"

The target for logging. This can be "syslog", "stderr", "file", or "default".
log_target = "stderr"

If syslog is used, the syslog facility can be given.
log_facility = "daemon"

If file logging is used, the log file must be given.
log_file = "/var/log/rtrtr.log"

Where should the HTTP server listen on?
http-listen = ["127.0.0.1:8080"]

Units

RTRTR currently has four types of units. Each unit gets its own section in the
configuration. The name of the section, given in square brackets, starts with
units. and is followed by a descriptive name you set, which you can later
refer to from other units, or a target.

RTR Unit

The unit of the type rtr takes a feed of Validated ROA Payloads (VRPs) from
a Relying Party software instance via the RTR protocol. Along with a unique
name, the only required argument is the IP or hostname of the instance to
connect to, along with the port.

Because the RTR protocol uses sessions and state, we don’t need to specify a
refresh interval for this unit. Should the server close the connection, by
default RTRTR will retry every 60 seconds. This value is configurable wih the
retry option.

[units.rtr-unit-name]
type = "rtr"
remote = "validator.example.net:3323"

It’s also possible to configure RTR over TLS, using the rtr-tls unit type.
When using this unit type, there is an additional configuration option,
cacerts, which specifies a list of paths to files that contain one or
more PEM encoded certificates that should be trusted when verifying a TLS server
certificate.

The rtr-tls unit also uses the usual set of web trust anchors, so this
option is only necessary when the RTR server doesn’t use a server certificate
that would be trusted by web browser. This is, for instance, the case if the
server uses a self-signed certificate in which case this certificate needs to be
added via this option.

JSON Unit

Most Relying Party software packages can produce the Validated ROA Payload set
in JSON format as well, either as a file on disk or at an HTTP endpoint. RTRTR
can use this format as a data source too, using units of the type json.
Along with specifying a name, you must specify the URI to fetch the VRP set
from, as well as the refresh interval in seconds.

[units.json-unit-name]
type = "json"
uri = "http://validator.example.net/vrps.json"
refresh = 60

Any Unit

The any unit type is given any number of other units and picks the data
set from one of them. Units can signal that they currently don’t have an
up-to-date data set available, allowing the any unit to skip those. This
ensures there is always an up-to-date data set available.

Important

The any unit uses a single data source at a time. RTRTR does
not attempt to make a union or intersection of multiple VRPs
sets, to avoid the risk of making a route invalid that would
otherwise be unknown.

To configure this unit, specify a name, set the type to any and list the
sources that should be used. Lastly, specify if a random unit should be selected
every time it needs to switch or whether it should go through the list in order.

[units.any-unit-name]
type = "any"
sources = ["unit-1", "unit-2", "unit-3"]
random = false

SLURM Unit

In some cases, you may want to override the global RPKI data set with your own
local exceptions. You can do this by specifying route origins that should be
filtered out of the output, as well as origins that should be added, in a file
using JSON notation according to the SLURM standard specified in RFC 8416 [https://tools.ietf.org/html/rfc8416.html].

You can refer to the JSON file you created with a unit of the type slurm. As
the source to which the exceptions should be applied, you must specify any of
the other units you have created. Note that the files attribute is an
array and can take multiple values as input.

[units.slurm]
type = "slurm"
source = "source-unit-name"
files = ["/var/lib/rtrtr/local-expections.json"]

The Local Exceptions [https://routinator.docs.nlnetlabs.nl/en/stable/local-exceptions.html] page in the Routinator documentation
has more information on the format and syntax of SLURM files.

Targets

RTRTR currently has two types of targets. As with units, each unit gets its own
section in the configuration. And also here, the name of the section starts with
targets. and is followed by a descriptive name you set, all enclosed in
square brackets.

RTR Target

Targets of the type rtr let you serve the data you collected with your units
via the RPKI-to-Router (RTR) protocol. You must give your target a name and
specify the host name or IP address it should listen on, along with the port. As
the RTR target can listen on multiple addresses, the listen argument is a list.
Lastly, you must specify the name of the unit the target should receive its data
from.

[targets.rtr-target-name]
type = "rtr"
listen = ["127.0.0.1:9001"]
unit = "source-unit-name"

This target also supports TLS connections, via the rtr-tls type. This target
has two additional configuration options. First, the certificate
option, which is a string value providing a path to a file containing the
PEM-encoded certificate to be used as the TLS server certificate. And secondly,
there is the key option, which provides a path to a file containing
the PEM-encoded certificate to be used as the private key by the TLS server.

HTTP Target

Targets of the type http let you serve the collected data via HTTP, which is
currently only possible in json format. You can us this data stream for
monitoring, provisioning, your IP address management, or any other purpose that
you require. To use this target, specify a name and a path, as well as the name
of the unit the target should receive its data from.

[targets.http-target-name]
type = "http"
path = "/json"
format = "json"
unit = "source-unit-name"

Example Scenario

To make it clearer how you can deploy RTRTR, below is an example scenario. This
flow may not be entirely realistic, but it intends to show all the different
ways you can wire units and targets together using a visual representation and
the configuration file needed to accomplish it.

In this example, there is routing infrastructure in a data centre labeled as
dc1. To ensure redundancy, it gets Validated ROA Payloads (VRPs) primarily
from relying party software running in the eu-west-3 location, using the RTR
protocol. There are two backups configured: a validator serving RTR in
ap-south-1 and an instance from another vendor offering a feed in JSON
format in us-east-2. A unit of the type any is configured to get a feed
from all three and, should the first one fail, do a round robin to the next
available one.

To make the management of some statically configured routes for this location
easy, the slurm unit gets its data from the any unit so only a single
file has to be kept up-to-date.

Finally, an http target is configured to get the VRPs without the SLURM
exceptions, to be fed into internal tooling and an rtr unit is defined to
serve the routing infrastructure.

[image: Example of an RTRTR data flow]Example of an RTRTR data flow

Configuration File

log_level = "debug"
log_target = "stderr"
log_facility = "daemon"
log_file = "/var/log/rtrtr.log"

http-listen = ["dc1.http.example.net:8080"]

RTR UNITS

[units.eu-west-3]
type = "rtr"
remote = "paris.validator.example.net:3323"

[units.ap-south-1]
type = "rtr"
remote = "mumbai.validator.example.net:3323"

JSON UNIT

[units.us-east-2]
type = "json"
uri = "https://ohio.validator.example.net/rpki.json"
refresh = 60

ANY UNIT

[units.round-robin]
type = "any"
sources = ["eu-west-3", "ap-south-1", "us-east-2"]
random = false

SLURM

[units.static-routes]
type = "slurm"
source = "round-robin"
files = ["/var/lib/rtrtr/local-expections.json"]

RTR TARGET

[targets.dc1-rtr]
type = "rtr"
listen = ["dc1.rtr.example.net:9001"]
unit = "static-routes"

JSON TARGET

[targets.dc1-json]
type = "http"
path = "/json"
format = "json"
unit = "round-robin"

Manual Page

Synopsis

rtrtr [options]

Description

RTRTR is an RPKI data proxy, designed to collect Validated ROA Payloads from
one or more sources in multiple formats and dispatch it onwards. It provides
the means to implement multiple distribution architectures for RPKI such as
centralised RPKI validators that dispatch data to local caching RTR servers.

RTRTR can read RPKI data from multiple RPKI Relying Party packages via RTR
and JSON and, in turn, provide an RTR service for routers to connect to. The
HTTP server provides the validated data set in JSON format, as well as a
monitoring endpoint in plain text and Prometheus format.

Options

	
-c path, --config=path

	Provides the path to a file containing the configuration for RTRTR. See
CONFIGURATION FILE below for more information on the format and
contents of the file.

This option is required.

	
-v, --verbose

	Print more information. If given twice, even more information is
printed.

More specifically, a single -v increases the log level from
the default of warn to info, specifying it more than once increases
it to debug.

See LOGGING below for more information on what information is logged
at the different levels.

	
-q, --quiet

	Print less information. Given twice, print nothing at all.

A single -q will drop the log level to error. Repeating
-q more than once turns logging off completely.

	
--syslog

	Redirect logging output to syslog.

This option is implied if a command is used that causes Routinator to
run in daemon mode.

	
--syslog-facility=facility

	If logging to syslog is used, this option can be used to specify the
syslog facility to use. The default is daemon.

	
--logfile=path

	Redirect logging output to the given file.

	
-h, --help

	Print some help information.

	
-V, --version

	Print version information.

Configuration File

The configuration file describes how and from where RTRTR is collecting data,
how it processes it and how it should provide access to the resulting data
set or data sets.

The configuration file is a file in TOML format. It consists of a sequence of
key-value pairs, each on its own line. Strings are to be enclosed in double
quotes. Lists can be given by enclosing a comma-separated list of values in
square brackets. The file contains multiple sections, each started with a
name enclosed in square brackets.

The first section without a name at the beginning of the file provides
general configuration for RTRTR as a whole. It is followed by a single
section for each component to be started.

There are two types of components: units and targets. Units take data
from somewhere and produce a single, constantly updated data set. Targets
take the data set from exactly one other unit and serve it in some specific
way.

Both units and targets have a name and a type that defines which particular
kind of unit or target this is. For each type, additional arguments need to
be provided. Which these are and what they mean depends on the type.

The section of a component is named by appending the name of the component to
its class. I.e., a unit named foo would have a section name of
[unit.foo] while a target bar would have a section name of
[target.bar].

The following reference lists all configuration options for the global
section as well as all options for each currently defined unit and target
type. For each option it states the name, type, and purpose. Any relative
path given as a configuration value is interpreted relative to the directory
the configuration file is located in.

Global Options

	http-listen
	A list of string values each specifying an address and port the HTTP
server should listen on. Address and port should be separated by a
colon. IPv6 address should be enclosed in square brackets.

RTRTR will listen on all address port combinations specified. All HTTP
endpoints will be available on all of them.

	log-level
	A string value specifying the maximum log level for which log messages
should be emitted. The default is warn.

	log
	A string specifying where to send log messages to. This can be
one of the following values:

	default
	Log messages will be sent to standard error if Routinator
stays attached to the terminal or to syslog if it runs in
daemon mode.

	stderr
	Log messages will be sent to standard error.

	syslog
	Log messages will be sent to syslog.

	file
	Log messages will be sent to the file specified through
the log-file configuration file entry.

The default if this value is missing is, unsurprisingly, default.

	log-file
	A string value containing the path to a file to which log messages will
be appended if the log configuration value is set to file. In this
case, the value is mandatory.

	syslog-facility
	A string value specifying the syslog facility to use for logging to
syslog. The default value if this entry is missing is daemon.

RTR Units

There are two units that download RPKI data sets from an upstream server
using the RPKI-to-Router protocol (RTR). The unit of type "rtr" uses
unencrypted RTR while "rtr-tls" uses RTR over TLS.

The RTR units have the following configuration options:

	remote
	A string value specifying the remote server to connect to. The string
must contain both an address and a port separated by a colon. The
address can be given as a an IP address, enclosed in square brackets
for IPv6, or a host name.

For the "rtr-tls" unit, the address portion will be used to verify
the server certificate against.

This option is mandatory.

	retry
	An integer value specifying the number of seconds to wait before trying
to reconnect to the server if it closed the connection.

If this option is missing, the default of 60 seconds is used.

	cacerts
	Only used with the "rtr-tls" type, a list of paths to files that
contain one or more PEM encoded certificates that should be trusted
when verifying a TLS server certificate.

The "rtr-tls" unit also uses the usual set of web trust anchors, so
this option is only necessary when the RTR server doesn’t use a server
certificate that would be trusted by web browser. This is, for
instance, the case if the server uses a self-signed certificate in
which case this certificate needs to be added via this option.

JSON Unit

A unit of type "json" imports and updates an RPKI data set through a
JSON-encoded file. It accepts the JSON format used by most relying party
packages.

The "json" unit has the following configuration options:

	uri
	A string value specifying the location of the JSON file expressed as a
URI.

If this is an http: or https: URI, the unit will download the
file from the given location.

If this is a file: URI, the unit will load the given local file.
Note that the unit just uses the path as given, so relative paths will
interpreted relative to the current directory, whatever that may be.

	refresh
	An integer value specifying the number of seconds to wait before
attempting to re-fetch the file.

This value is used independently of whether the previous fetch has
succeeded or not.

Any Unit

A unit of type "any" will pick one data set from one of a number of
source units. The unit will only pick a source if it has an updated data set
and can therefore be used to fall back to a different unit if one fails.

The "any" unit has the following configuration options:

	sources
	A list of strings each containing the name of a unit to use as a
source.

	random
	A boolean value specifying whether the unit should pick a source unit
at random. If the value is false or not given, the source units are
picked in the order given.

SLURM Unit

A unit of type "slurm" will apply local exception rules to a data set
provided by another unit. These rules are defined through local JSON files as
described in RFC 8416 [https://tools.ietf.org/html/rfc8416.html]. They allow to both filter out existing entries in a
data set as well as add new entries.

The "slurm" unit has the following configuration options:

	source
	A string value specifying the name of the unit that provides the
data set to apply the local exceptions to.

	files
	A list of strings each specifying the path to a local exception file.

The files are continously checked for updates, so RTRTR does not need
to be restarted if the files are updated.

RTR Targets

There are two types of targets that provide a data set as an RTR server. The
target of type "rtr" provides the data set over unencrypted RTR while
the type "rtr-tls" offers the set through RTR over TLS.

The RTR targets have the following configuration options:

	listen
	A list of string values each specifying an address and port the RTR
target should listen on. Address and port should be separated by a
colon. IPv6 address should be enclosed in square brackets.

	unit
	A string value specifying the name of the unit that provides the data
set for the RTR target to offer.

	history-size
	An integer value specifying the number of diffs the target should keep
in order to process RTR serial queries, i.e., the number of updates to
the data set a client may fall behind before having to fetch the full
data set again.

If this value is missing, it defaults to 10.

The "rtr-tls" target has the following additional configuration
options:

	certificate
	A string value providing a path to a file containing the PEM-encoded
certificate to be used as the TLS server certificate.

	key
	A string value providing a path to a file containing the PEM-encoded
certificate to be used as the private key by the TLS server.

HTTP Target

A target of type "http" will offer the data set provided by a unit for
download through the HTTP server.

The "http" target has the following configuration options:

	path
	A string value specifying the path in the HTTP server under which the
target should offer its data.

All HTTP targets share the same name space in RTRTR’s global HTTP
server. This value provides the path portion of HTTP URIs. It should
start with a slash.

	format
	A string value specifying the format of the data set to be offered.
Currently, this has to be "json" for the JSON format.

	unit
	A string value specifying the name of the unit that provides the data
set for the RTR target to offer.

Logging

In order to allow diagnosis of the operation as well as its overall health,
RTRTR logs an extensive amount of information. The log levels used by
syslog are utilized to allow filtering this information for particular use
cases.

The log levels represent the following information:

	error
	Information related to events that prevent RTRTR from continuing to
operate at all as well as all issues related to local configuration
even if RTRTR will continue to run.

	warn
	Information about events and data that influences the data sets
produced by RTRTR. This includes failures to communicate with
upstream servers, or encountering invalid data.

	info
	Information about events and data that could be considered abnormal but
do not influence the data set.

	debug
	Information about the internal state of RTRTR that may be useful for
debugging.

Index

 Symbols
 | C
 | R

Symbols

 	
 	
 --config=path

 	command line option

 	
 --help

 	command line option

 	
 --logfile=path

 	command line option

 	
 --quiet

 	command line option

 	
 --syslog

 	command line option

 	
 --syslog-facility=facility

 	command line option

 	
 --verbose

 	command line option

 	
 	
 --version

 	command line option

 	
 -c path

 	command line option

 	
 -h

 	command line option

 	
 -q

 	command line option

 	
 -V

 	command line option

 	
 -v

 	command line option

C

 	
 	
 command line option

 	--config=path

 	--help

 	--logfile=path

 	--quiet

 	--syslog

 	--syslog-facility=facility

 	--verbose

 	--version

 	-c path

 	-h

 	-q

 	-v

 	-V

R

 	
 	
 RFC

 	RFC 8416, [1]

 nav.xhtml

 Table of Contents

 		
 RTRTR 0.2.2

_static/plus.png

_static/file.png

_static/minus.png

